Христиан гюйгенс получил патент на конструкцию. Необоснованные обвинения. О голландском учёном Христиане Гюйгенсе и итальянском учёном Галилео Галилее. Приговор кардиналов над Галилеем

Важнейшим достижением Галилея в динамике было создание принципа относительности, ставшего основой современной теории относительности. Решительно отказавшись от представлений Аристотеля о движении, Галилей пришел к выводу, что движение (имеются в виду только механические процессы) относительно, то есть нельзя говорить о движении, не уточнив, по отношению к какому «телу отсчета» оно происходит; законы же движения безотносительны, и поэтому, находясь в закрытой кабине (он образно писал "в закрытом помещении под палубой корабля"), нельзя никакими опытами установить, покоится ли эта кабина или же движется равномерно и прямолинейно ("без толчков", по выражению Галилея).

Галилей сам безрассудно рассылает 30 экземпляров своей книги влиятельным духовным лицам в Риме. Уже через несколько месяцев книга была запрещена и изъята из продажи, а Галилея вызвали в Рим (невзирая на эпидемию чумы) на суд Инквизиции по подозрению в ереси. По окончании первого допроса обвиняемого взяли под арест. Галилей провёл в заключении всего 18 дней (с 12 по 30 апреля 1633 года) - эта необычная снисходительность, вероятно, была вызвана согласием Галилея покаяться, а также влиянием тосканского герцога, непрестанно хлопотавшего о смягчении участи своего старого учителя. Принимая во внимание его болезни и преклонный возраст, в качестве тюрьмы была использована одна из служебных комнат в здании инквизиционного трибунала.
В приговоре инквизиции были обнаружены следующие слова: "Заметив, что ты при ответах не совсем чистосердечно признаёшься в своих намерениях, мы сочли необходимым прибегнуть к строгому испытанию." После "испытания" Галилей в письме из тюрьмы осторожно сообщает, что не встаёт с постели, так как его мучает "ужасная боль в бедре".
Инквизиция провела пленарное заседание, где постановила: "Ознакомившись со всем ходом дела и выслушав показания, Его Святейшество определил допросить Галилея под угрозой пытки и, если устоит, то после предварительного отречения как сильно подозреваемого в ереси… приговорить к заключению по усмотрению Святой Конгрегации. Ему предписано не рассуждать более письменно или устно каким-либо образом о движении Земли и о неподвижности Солнца… под страхом наказания как неисправимого... Вследствие рассмотрения твоей вины и сознания твоего в ней присуждаем и объявляем тебя, Галилей, за всё вышеизложенное и исповеданное тобою под сильным подозрением у сего Св. судилища в ереси, как одержимого ложною и противною Священному и Божественному Писанию мыслью, будто Солнце есть центр земной орбиты и не движется от востока к западу, Земля же подвижна и не есть центр Вселенной. Также признаем тебя ослушником церковной власти, запретившей тебе излагать, защищать и выдавать за вероятное учение, признанное ложным и противным Св. Писанию… Дабы столь тяжкий и вредоносный грех твой и ослушание не остались без всякой мзды и ты впоследствии не сделался бы еще дерзновеннее, а, напротив, послужил бы примером и предостережением для других, мы постановили книгу под заглавием "Диалог" Галилео Галилея запретить, а тебя самого заключить в тюрьму при Св. судилище на неопределённое время."
Галилей был осуждён к тюремному заключению на срок, который установит Папа. Его объявили не еретиком, а "сильно заподозренным в ереси"; такая формулировка также была тяжким обвинением, однако спасала от костра. После оглашения приговора Галилей на коленях произнёс предложенный ему текст отречения. Копии приговора по личному распоряжению Папы Урбана были разосланы во все университеты католической Европы.
Папа не стал долго держать Галилея в тюрьме. После вынесения приговора Галилея поселили на одной из вилл Медичи, откуда он был переведен во дворец своего друга, архиепископа Пикколомини в Сиене. Спустя 5 месяцев Галилею было разрешено отправиться на родину, и он поселился в Арчетри, рядом с монастырём, где находились его дочери. Здесь он провёл остаток жизни под домашним арестом и под постоянным надзором инквизиции.


Биография

Христиан Гюйгенс - нидерландский механик, физик, математик, астроном и изобретатель.

Один из основоположников теоретической механики и теории вероятностей. Внёс значительный вклад в оптику, молекулярную физику, астрономию, геометрию, часовое дело. Открыл кольца Сатурна и Титан (спутник Сатурна). Первый иностранный член Лондонского королевского общества (1663), член Французской академии наук с момента её основания (1666) и её первый президент (1666-1681).

Гюйгенс родился в Гааге в 1629 году. Отец его Константин Гюйгенс (Хёйгенс), тайный советник принцев Оранских, был замечательным литератором, получившим также хорошее научное образование. Константин был другом Декарта, и декартовская философия (картезианство) оказала большое влияние не только на отца, но и на самого Христиана Гюйгенса.

Молодой Гюйгенс изучал право и математику в Лейденском университете, затем решил посвятить себя науке. В 1651 году опубликовал «Рассуждения о квадратуре гиперболы, эллипса и круга». Вместе с братом он усовершенствовал телескоп, доведя его до 92-кратного увеличения, и занялся изучением неба. Первая известность пришла к Гюйгенсу, когда он открыл кольца Сатурна (Галилей их тоже видел, но не смог понять, что это такое) и спутник этой планеты, Титан.

В 1657 году Гюйгенс получил голландский патент на конструкцию маятниковых часов. В последние годы жизни этот механизм пытался создать Галилей, но ему помешала прогрессирующая слепота. Часы Гюйгенса реально работали и обеспечивали превосходную для того времени точность хода. Центральным элементом конструкции был придуманный Гюйгенсом якорь, который периодически подталкивал маятник и поддерживал незатухающие колебания. Сконструированные Гюйгенсом точные и недорогие часы с маятником быстро получили широчайшее распространение по всему миру. В 1673 году под названием «Маятниковые часы» вышел чрезвычайно содержательный трактат Гюйгенса по кинематике ускоренного движения. Эта книга была настольной у Ньютона, который завершил начатое Галилеем и продолженное Гюйгенсом построение фундамента механики.

В 1661 году Гюйгенс совершил поездку в Англию. В 1665 году по приглашению Кольбера поселился в Париже, где в 1666 году была создана Парижская Академия наук. По предложению того же Кольбера Гюйгенс стал её первым президентом и руководил Академией 15 лет. В 1681 году, в связи с намеченной отменой Нантского эдикта, Гюйгенс, не желая переходить в католицизм, вернулся в Голландию, где продолжил свои научные исследования. В начале 1690-х годов здоровье учёного стало ухудшаться, он умер в 1695 году. Последним трудом Гюйгенса стал «Космотеорос», в нём он аргументировал возможность жизни на других планетах.

Научная деятельность

Лагранж писал, что Гюйгенсу «было суждено усовершенствовать и развить важнейшие открытия Галилея».

Математика

Научную деятельность Христиан Гюйгенс начал в 1651 году сочинением о квадратуре гиперболы, эллипса и круга. В 1654 году он разработал общую теорию эволют и эвольвент, исследовал циклоиду и цепную линию, продвинул теорию непрерывных дробей.

В 1657 году Гюйгенс написал приложение «О расчётах в азартной игре» к книге его учителя ван Схоотена «Математические этюды». Это было первое изложение начал зарождающейся тогда теории вероятностей. Гюйгенс, наряду с Ферма и Паскалем, заложил её основы, ввёл фундаментальное понятие математического ожидания. По этой книге знакомился с теорией вероятностей Якоб Бернулли, который и завершил создание основ теории.

Механика

В 1657 году Гюйгенс издал описание устройства изобретённых им часов с маятником. В то время учёные не располагали таким необходимым для экспериментов прибором, как точные часы. Галилей, например, при изучении законов падения считал удары собственного пульса. Часы с колесами, приводимыми в движение гирями, были в употреблении с давнего времени, но точность их была неудовлетворительна. Маятник же со времен Галилея употребляли отдельно для точного измерения небольших промежутков времени, причём приходилось вести счёт числу качаний. Часы Гюйгенса обладали хорошей точностью, и учёный далее неоднократно, на протяжении почти 40 лет, обращался к своему изобретению, совершенствуя его и изучая свойства маятника. Гюйгенс намеревался применить маятниковые часы для решения задачи определения долготы на море, но существенного продвижения не добился. Надёжный и точный морской хронометр появился только в 1735 году (в Великобритании).

В 1673 году Гюйгенс опубликовал классический труд по механике «Маятниковые часы» («Horologium oscillatorium, sive de motu pendulorum an horologia aptato demonstrationes geometrica»). Скромное название не должно вводить в заблуждение. Кроме теории часов, сочинение содержало множество первоклассных открытий в области анализа и теоретической механики. Гюйгенс также проводит там квадратуру ряда поверхностей вращения. Это и другие его сочинения имели огромное влияние на молодого Ньютона.

В первой части труда Гюйгенс описывает усовершенствованный, циклоидальный маятник, который обладает постоянным временем качания независимо от амплитуды. Для объяснения этого свойства автор посвящает вторую часть книги выводу общих законов движения тел в поле тяжести - свободных, движущихся по наклонной плоскости, скатывающихся по циклоиде. Надо сказать, что это усовершенствование не нашло практического применения, поскольку при малых колебаниях повышение точности от циклоидального привеса незначительно. Однако сама методика исследования вошла в золотой фонд науки.

Гюйгенс выводит законы равноускоренного движения свободно падающих тел, основываясь на предположении, что действие, сообщаемое телу постоянной силой, не зависит от величины и направления начальной скорости. Выводя зависимость между высотой падения и квадратом времени, Гюйгенс делает замечание, что высоты падений относятся как квадраты приобретенных скоростей. Далее, рассматривая свободное движение тела, брошенного вверх, он находит, что тело поднимается на наибольшую высоту, потеряв всю сообщенную ему скорость, и приобретает её снова при возвращении обратно.

Галилей допускал без доказательства, что при падении по различно наклонным прямым с одинаковой высоты тела приобретают равные скорости. Гюйгенс доказывает это следующим образом. Две прямые разного наклонения и равной высоты приставляются нижними концами одна к другой. Если тело, спущенное с верхнего конца одной из них, приобретает большую скорость, чем пущенное с верхнего конца другой, то можно пустить его по первой из такой точки ниже верхнего конца, чтобы приобретенная внизу скорость была достаточна для подъёма тела до верхнего конца второй прямой; но тогда бы вышло, что тело поднялось на высоту, большую той, с которой упало, а этого быть не может. От движения тела по наклонной прямой Гюйгенс переходит к движению по ломаной линии и далее к движению по какой-либо кривой, причём доказывает, что скорость, приобретаемая при падении с какой-либо высоты по кривой, равна скорости, приобретаемой при свободном падении с той же высоты по вертикальной линии, и что такая же скорость необходима для подъёма того же тела на ту же высоту как по вертикальной прямой, так и по кривой. Затем, переходя к циклоиде и рассмотрев некоторые геометрические свойства её, автор доказывает таутохронность движений тяжелой точки по циклоиде.

В третьей части сочинения излагается теория эволют и эвольвент, открытая автором ещё в 1654 году; здесь он находит вид и положение эволюты циклоиды. В четвёртой части излагается теория физического маятника; здесь Гюйгенс решает ту задачу, которая не давалась стольким современным ему геометрам, - задачу об определении центра качаний. Он основывается на следующем предложении:

Если сложный маятник, выйдя из покоя, совершил некоторую часть своего качания, большую полуразмаха, и если связь между всеми его частицами будет уничтожена, то каждая из этих частиц поднимется на такую высоту, что общий центр тяжести их при этом будет на той высоте, на которой он был при выходе маятника из покоя. Это предложение, не доказанное у Гюйгенса, является у него в качестве основного начала, между тем как теперь оно представляет простое следствие закона сохранения энергии.

Теория физического маятника дана Гюйгенсом вполне в общем виде и в применении к телам разного рода. Гюйгенс исправил ошибку Галилея и показал, что провозглашённая последним изохронность колебаний маятника имеет место лишь приближённо. Он отметил также ещё две ошибки Галилея в кинематике: равномерное движение по окружности связано с ускорением (Галилей это отрицал), а центробежная сила пропорциональна не скорости, а квадрату скорости.

В последней, пятой части своего сочинения Гюйгенс дает тринадцать теорем о центробежной силе. Эта глава даёт впервые точное количественное выражение для центробежной силы, которое впоследствии сыграло важную роль для исследования движения планет и открытия закона всемирного тяготения. Гюйгенс приводит в ней (словесно) несколько фундаментальных формул:

Астрономия

Гюйгенс самостоятельно усовершенствовал телескоп; в 1655 году он открыл спутник Сатурна Титан и описал кольца Сатурна. В 1659-м он описал всю систему Сатурна в изданном им сочинении.

В 1672 году он обнаружил ледяную шапку на Южном полюсе Марса. Он открыл также туманность Ориона и другие туманности, наблюдал двойные звёзды, оценил (довольно точно) период вращения Марса вокруг оси.

Последняя книга «ΚΟΣΜΟΘΕΩΡΟΣ sive de terris coelestibus earumque ornatu conjecturae» (на латинском языке; опубликована посмертно в Гааге в 1698 году) - философско-астрономическое размышление о Вселенной. Полагал, что другие планеты также населены людьми. Книга Гюйгенса получила широчайшее распространение в Европе, где была переведена на английский (1698), голландский (1699), французский (1702), немецкий (1703), русский (1717) и шведский (1774) языки. На русский язык по указу Петра I была переведена Яковом Брюсом под названием «Книга мирозрения». Считается первой в России книгой, где излагается гелиоцентрическая система Коперника.

В этом труде Гюйгенс сделал первую (наряду с Джеймсом Грегори) попытку определить расстояние до звёзд. Если предположить, что все звёзды, включая Солнце, имеют близкую светимость, то, сравнивая их видимую яркость, можно грубо оценить отношение расстояний до них (расстояние до Солнца было тогда уже известно с достаточной точностью). Для Сириуса Гюйгенс получил расстояние в 28000 астрономических единиц, что примерно в 20 раз меньше истинного (опубликовано посмертно, в 1698 году).

Оптика и теория волн

Гюйгенс участвовал в современных ему спорах о природе света. В 1678 году он выпустил «Трактат о свете» - набросок волновой теории света. Другое замечательное сочинение он издал в 1690 году; там он изложил качественную теорию отражения, преломления и двойного лучепреломления в исландском шпате в том самом виде, как она излагается теперь в учебниках физики. Сформулировал «принцип Гюйгенса», позволяющий исследовать движение волнового фронта, впоследствии развитый Френелем и сыгравший важную роль в волновой теории света. Открыл поляризацию света (1678).

Ему принадлежит оригинальное усовершенствование телескопа, использованного им в астрономических наблюдениях и упомянутого в параграфе об астрономии, он изобрел «окуляр Гюйгенса», состоящий из двух плосковыпуклых линз (используется и в наши дни). Также он является изобретателем диаскопического проектора - т. н. «волшебного фонаря».

Другие достижения

Гюйгенс обосновал (теоретически) сплюснутость Земли у полюсов, а также объяснил влияния центробежной силы на направление силы тяжести и на длину секундного маятника на разных широтах. Он дал решение вопроса о соударении упругих тел, одновременно с Валлисом и Реном (опубликовано посмертно) и одно из решений вопроса о виде тяжелой однородной цепи, находящейся в равновесии (цепная линия).

Ему принадлежит изобретение часовой спирали, заменяющей маятник, крайне важное для навигации; первые часы со спиралью были сконструированы в Париже часовым мастером Тюре в 1674 году. в 1675 году запатентовал карманные часы.

Гюйгенс первым призвал выбрать всемирную натуральную меру длины, в качестве которой предложил 1/3 длины маятника с периодом колебаний 1 секунда (это примерно 8 см).

Основные труды

Horologium oscillatorium, 1673 (Маятниковые часы, на латинском).
Kosmotheeoros. (английский перевод издания 1698 года) - астрономические открытия Гюйгенса, гипотезы об иных планетах.
Treatise on Light (Трактат о свете, английский перевод).

Гюйгенс Христиан (1629-1695), нидерландский физик, математик, механик, астроном.

Родился 14 апреля 1629 г. в Гааге. В 16 лет поступил в университет Лейдена, через два года продолжил обучение в университете города Бреда. В основном жил в Париже; был членом Парижской академии наук.

Гюйгенс стал известен как блестящий математик. Однако судьба распорядилась так, что он был современником И. Ньютона, а значит, всегда находился в тени чужого таланта. Гюйгенс явился
одним из разработчиков механики после Галилея и Декарта. Ему принадлежит первенство в создании маятниковых часов со спусковым механизмом. Он сумел решить задачу об определении центра колебания физического маятника, установить законы, определяющие центростремительную силу. Он также исследовал и вывел закономерности столкновения упругих тел.

Раньше Ньютона Гюйгенс разработал волновую теорию света. Принцип Гюйгенса (1678 г.) - открытый им механизм распространения света - применим и в наши дни. Опираясь на свою теорию света, Гюйгенс объяснил ряд оптических явлений, с большой точностью измерил геометрические характеристики исландского шпата и обнаружил в нём двойное лучепреломление, затем это же явление увидел в кристаллах кварца. Гюйгенс ввёл понятие «ось кристалла», обнаружил поляризацию света. С большим успехом работал он в области оптики: значительно усовершенствовал телескоп, сконструировал окуляр, ввёл диафрагмы.

Являясь одним из создателей Парижской обсерватории, внёс значительный вклад в астрономию - открыл 8 кольцо Сатурна и Титан, один из самых больших спутников в Солнечной системе, различил полярные шапки на Марсе и полосы на Юпитере. Учёный с большим интересом конструировал так называемую планетарную машину (планетарий) и создавал теорию фигуры Земли. Первым подошёл к заключению, что Земля сжата возле полюсов, и высказал идею измерять силу тяжести с помощью секундного маятника. Гюйгенс вплотную подошёл к открытию закона всемирного тяготения. Его математическими методами в науке пользуются и сегодня.

Голландский физик, механик, математик и астроном, Христиан Гюйгенс, был непосредственным преемником Галилея в науке. Лагранж говорил, что Гюйгенсу «было суждено усовершенствовать и развить важнейшие открытия Галилея». В первый раз Гюйгенс соприкоснулся с идеями Галилея в 17 лет: он собирался доказать, что тела, брошенные горизонтально, движутся по параболе, и обнаружил такое доказательство в книге Галилея.

Отец Гюйгенса происходил из голландского дворянского рода и получил прекрасное образование: он знал языки и литературу многих народов и эпох, сам писал поэтические произведения по-латыни и по-нидерландски. Он был также знатоком музыки и живописи, тонким и остроумным человеком. Его интересовали достижения науки в области математики, механики и оптики. Неординарность его личности подтверждает то, что среди его друзей было много известных людей, в том числе и знаменитый Рене Декарт, выдающийся французский ученый.

Влияние Декарта сильно отразилось на формировании мировоззрения его сына, будущего великого ученого.

Детство и юность.

В восемь лет Христиан выучил латынь, знал четыре действия арифметики, а в девять лет он познакомился с географией и началами астрономии, умел определять время восхода и захода Солнца во все времена года. Когда Христиану минуло десять лет, он научился слагать стихи на латыни и играть на скрипке, в одиннадцать познакомился с игрой на лютне, а в двенадцать знал основные правила логики.

После изучения греческого, французского и итальянского языков, а также игры на клавесине, Христиан перешел к механике, которая захватила его целиком. Он конструирует различные машины, например, самостоятельно делает токарный станок. В 1643 году учитель Христиана сообщает отцу: «Христиана нужно назвать чудом среди мальчиков… Он развертывает свои способности в области механики и конструкций, делает машины удивительные…».

Далее Христиан обучается математике, верховой езде и танцам. Сохранился рукописный математический курс для Христиана, составленный известным математиком, другом Декарта, Франциском Схоутеном. В курсе излагались начала алгебры и геометрии, неопределенные уравнения из «Арифметики» Диофанта, иррациональные числа, извлечение квадратного и кубического корней, а также теория алгебраических уравнений высших степеней. Переписана книга Декарта «Геометрия». Затем даны приложения алгебры к геометрии и уравнения геометрических мест. Наконец, рассмотрены конические сечения и даны задачи на построение касательных к различным кривым методами Декарта и Ферма.

В шестнадцать лет Христиан вместе с братом поступает в Лейденский университет для изучения права и одновременно обучается математике у Схоутена, который отсылает на отзыв Декарту его первые математические работы. Декарт похвально отзывается на «математические изобретения» Христиана: «Хотя он и не вполне получил то, что ему нужно, но это никоим образом не странно, так как он попытался найти вещи, которые еще никому не удавались. Он принялся за это дело таким образом, что я уверен в том, что он сделается выдающимся ученым в этой области».

В это время Христиан изучает Архимеда, «Конические сечения» Аполлония, оптику Вителло и Кеплера, «Диоптрику» Декарта, астрономию Птолемея и Коперника, механику Стевина. Знакомясь с последней, Гюйгенс доказывает, что утверждение о том, что фигура равновесия нити, свободно подвешенной между двумя точками, будет параболой, неверно. В настоящее время известно, что нить расположится по так называемой цепной линии.

Христиан вел переписку с Марином Мерсенном, францисканским монахом, издателем французского перевода «Механики» Галилея и краткого изложения его «Диалогов…». Мерсенн живо интересовался научными достижениями своего времени и в письмах сообщал о новейших открытиях и наиболее интересных задачах математики и механики. В те времена подобная переписка заменяла отсутствовавшие научные журналы.

Мерсенн присылал Христиану интересные задачи. Из его писем тот познакомился с циклоидой и центром качания физического маятника. Узнав о критике Гюйгенсом параболической формы нити, Мерсенн сообщил, что такая же ошибка была сделана и самим Галилеем, и попросил прислать полное доказательство.

Заканчивая отчет Мерсенну о своих работах, он писал: «Я решил попробовать доказать, что тяжелые тела, брошенные вверх или в сторону, описывают параболу, но тем временем мне попала в руки книга Галилея об ускоренном движении естественном или насильственном; когда я увидал, что он доказал и это, и многое другое, то я уже не захотел писать Илиаду после Гомера».

Гюйгенс и Архимед.

После Лейдена Христиан с младшим братом Лодевиком едет учиться в «Оранской коллегии». Отец, видимо, готовил Христиана к государственной деятельности, но это Христиана не соблазняло.

В духе Архимеда двадцатитрехлетний Христиан написал книгу о теории плавания тел: «О равновесии тел, плавающих в жидкости». Позднее, в 1654 году, появилось еще одно сочинение в духе Архимеда «Открытия о величине круга», которое представляло прогресс по сравнению с архимедовым «Измерением круга». Гюйгенс получил значение числа «пи» с восемью верными знаками после запятой. Сюда же можно отнести работу «Теоремы о квадратуре гиперболы, эллипса и круга и центра тяжести их частей».

Написанный в 1657 году трактат «О расчетах при азартной игре» является одной из первых известных работ по теории вероятности.

Гюйгенс и оптика.

Еще в 1652 году Гюйгенс заинтересовался темой, которую разрабатывал Декарт. Это была диоптрика - учение о преломлении света. Своему знакомому он пишет: «Я уже имею почти написанные две книги об этом предмете, к которым добавляется и третья: первая говорит о преломлении в плоских и сферических поверхностях…, вторая о видимом увеличении или уменьшении изображений предметов, получающихся при помощи преломления». Третья книга, в которой предполагалось говорить о телескопах и микроскопах, была написана чуть позже. Над «Диоптрикой» Гюйгенс работал с перерывами около 40 лет (с 1652 по 1692 год).

Отдельные главы первой части «Диоптрики» посвящены преломлению света в плоских и сферических поверхностях; автор дает экспериментальное определение показателя преломления разных прозрачных тел и рассматривает задачи преломления света в призмах и линзах. Затем он определяет фокусное расстояние линз и исследует связь между положением предмета на оптической оси линзы и положением его изображения, то есть получает выражение основной формулы линзы. Заканчивается первая часть книги рассмотрением строения глаза и теорией зрения.

Во второй части книги Гюйгенс говорит об обратимости оптической системы.

В третьей части книги автор уделяет большое внимание сферической аберрации (искажению) линз и методам ее исправления. Для ряда частных случаев он находит форму преломляющих поверхностей линз, не дающих сферической аберрации. С целью уменьшения аберраций телескопа Христиан предлагает конструкцию «воздушного телескопа», где объектив и окуляр не связаны между собой. Длина «воздушного телескопа» Гюйгенса составляла 64 м. С помощью этого телескопа он обнаружил у Сатурна спутник, Титан, а также наблюдал четыре спутника Юпитера, открытые ранее Галилеем.

Гюйгенс с помощью своих телескопов сумел объяснить также странный вид Сатурна, смущавший астрономов, начиная с Галилея, - он установил, что тело планеты окружено кольцом.

В 1662 году Гюйгенс также предложил новую оптическую систему окуляра, которая впоследствии была названа его именем. Этот окуляр состоял из двух положительных линз, разделенных большим воздушным промежутком. Такой окуляр по схеме Гюйгенса широко применяется оптиками и в наши дни.

В 1672-1673 годах Гюйгенс знакомится с гипотезой Ньютона о составе белого света. Примерно в это же время у него формируется идея волновой теории света, которая находит свое выражение в знаменитом «Трактате о свете», вышедшем в свет в 1690 году.

Гюйгенс и механика.

Гюйгенса следует поставить в самом начале длинного ряда исследователей, которые принимали участие в установлении всеобщего закона сохранения энергии.

Гюйгенс предлагает способ определения скоростей тел после их соударения. Основной текст его трактата «Теория удара твердых тел» был закончен в 1652 году, но свойственное Гюйгенсу критическое отношение к своим трудам привело к тому, что трактат вышел только после смерти Гюйгенса. Правда, будучи в Англии в 1661 году, он демонстрировал опыты, подтверждающие его теорию удара. Секретарь Лондонского Королевского общества писал: «Был подвешен шар весом один фунт в виде маятника; когда он был отпущен, то по нему ударил другой шар, подвешенный точно так же, но только весом в полфунта; угол отклонения был сорок градусов, и Гюйгенс после небольшого алгебраического вычисления предсказал, каков будет результат, который оказался в точности соответствующим предсказанию».

Гюйгенс и часы.

На период с декабря 1655 года по октябрь 1660 года приходится наибольший расцвет научной деятельности Гюйгенса. В это время, кроме завершения теории кольца Сатурна и теории удара, были выполнены почти все основные работы Гюйгенса, принесшие ему славу.

Гюйгенс во многих вопросах наследовал и совершенствовал решение проблем, предпринятое Галилеем. Например, он обратился к исследованию изохронного характера качаний математического маятника (свойство колебаний, проявляющееся в том, что частота малых колебаний практически не зависит от их амплитуды). Вероятно, в свое время это было первым открытием Галилея в механике. Гюйгенсу представилась возможность дополнить Галилея: изохронность математического маятника (то есть независимость периода колебаний маятника определенной длины от амплитуды размаха) оказалась справедливой лишь приближенно и то для малых углов отклонения маятника. И Гюйгенс осуществил идею, которая занимала Галилея в его последние годы жизни: он сконструировал маятниковые часы.

Задачей о создании и совершенствовании часов, прежде всего маятниковых, Гюйгенс занимался почти сорок лет: с 1656 по 1693 год.

Один из основных мемуаров Гюйгенса, посвященных рассмотрению результатов по математике и механике, вышел в 1673 году под названием «Маятниковые часы или геометрические доказательства, относящиеся к движению маятников, приспособленных к часам». Пытаясь решить одну из основных задач своей жизни - создать часы, которые можно было бы использовать в качестве морского хронометра, Гюйгенс придумал множество решений и продумал много проблем, исследуя возможности их приложения к этой задаче: циклоидальный маятник, теория развертки кривых, центробежные силы и их роль и др. Одновременно он решал возникающие математические и механические задачи. Почему же задача создания часов так привлекала известного ученого?

Часы относятся к очень древним изобретениям человека. Сначала это были солнечные, водяные, песочные часы; в эпоху Средневековья появились механические часы. Долгое время они были громоздкими. Существовало несколько способов преобразования ускоренного падения груза в равномерное движение стрелок, но даже известные своей точностью астрономические часы Тихо Браге каждый день «подгонялись» принудительно.

Именно Галилей первым обнаружил, что колебания маятника изохронны и собирался использовать маятник при создании часов. Летом 1636 года он писал голландскому адмиралу Л. Реалю о соединении маятника со счетчиком колебаний (это по существу и есть проект маятниковых часов!). Однако из-за болезни и скорой кончины Галилей не закончил работу.

Нелегкий путь от лабораторных экспериментов до создания маятниковых часов преодолел в 1657 году Христиан Гюйгенс, в то время уже известный ученый. 12 января 1657 года он писал:

«На этих днях я нашел новую конструкцию часов, при помощи которой время измеряется так точно, что появляется немалая надежда на возможность измерения при ее помощи долготы, даже если придется везти их по морю».

С этого момента и до 1693 года он стремится совершенствовать часы. И если в начале Гюйгенс проявил себя как инженер, использующий в известном механизме изохронное свойство маятника, то постепенно все больше проявлялись его возможности физика и математика.

Среди инженерных его находок был ряд поистине выдающихся. В часах Гюйгенса впервые была реализована идея автоколебаний, основанная на обратной связи: энергия сообщалась маятнику так, что «сам источник колебаний определял моменты времени, когда требуется доставка энергии». У Гюйгенса эту роль выполняло простое устройство в виде якоря с косо срезанными зубцами, ритмически подталкивающего маятник.

Гюйгенс обнаружил, что колебания маятника изохронны лишь при малых углах отклонения от вертикали, и решил с целью компенсации отклонений уменьшать длину маятника при увеличении угла отклонения. Гюйгенс догадался, как это реализовать технически.

Волновая теория света.

В семидесятые годы основное внимание Гюйгенса привлекают световые явления. В 1676 году он приезжает в Голландию и знакомится с одним из создателей микроскопии Антони ван Левенгуком, после чего пытается сам изготовить микроскоп.

В 1678 году Гюйгенс приезжает в Париж, где его микроскопы произвели потрясающее впечатление. Он демонстрировал их на заседании Парижской Академии.

Христиан Гюйгенс стал создателем волновой теории света, основные положения которой вошли в современную физику. Свои взгляды он изложил в «Трактате о свете», изданном в 1690 году. Гюйгенс считал, что корпускулярная теория света, или теория истечения, противоречит свойствам световых лучей не мешать друг другу при пересечении. Он полагал, что Вселенная заполнена тончайшей, и в высшей степени, подвижной упругой средой - мировым эфиром. Если в каком-либо месте эфира частица начнет колебаться, то колебание передается всем соседним частицам, и в пространстве пробегает эфирная волна от первой частицы как центра.

Волновые представления позволили Гюйгенсу теоретически сформулировать законы отражения и преломления света. Он дал наглядную модель распространения света в кристаллах.

Волновая теория объясняла явления геометрической оптики, но поскольку Гюйгенс сравнивал световые волны и звуковые и полагал, что они являются продольными и распространяются в виде импульсов, он не смог объяснить явления интерференции и дифракции света, которые зависят от периодичности световых волн. Вообще Гюйгенс гораздо больше интересовался волнами как распространением колебаний в прозрачной среде, чем механизмом самих колебаний, который не был ему ясен.

Рассказы об ученых по физике. 2014

13/05/2002

Более трехсот лет длилась эволюция маятниковых часов. Тысячи изобретений на пути к совершенству. Но в исторической памяти надолго останутся лишь те, кто поставил первую и последнюю точку в этой великой эпопее

Более трехсот лет длилась эволюция маятниковых часов. Тысячи изобретений на пути к совершенству. Но в исторической памяти надолго останутся лишь те, кто поставил первую и последнюю точку в этой великой эпопее.

Часы из телевизора
Перед любыми программами новостей на телевидении мы видим часы, секундная стрелка которых с большим достоинством отсчитывает последние мгновения до начала передачи. Этот циферблат - видимая часть айсберга под названием АЧФ-3, астрономические часы Федченко. Не каждый прибор носит имя конструктора, не обо всех изобретениях сообщают в энциклопедиях.

Часы Феодосия Михайловича Федченко удостоены такой чести. В любой другой стране об изобретателе подобного уровня знал бы каждый школьник. А у нас уже 11 лет назад тихо и скромно ушел из жизни выдающийся конструктор и никто о нем даже вспоминает. Почему? Наверное, в свое время был упрям, не умел льстить и лицемерить, что так не нравилось чиновникам от науки.
Помогла изобрести Федченко знаменитые часы случайность. Одна из тех загадочных случайностей, которая так украшает историю науки.

Две первые точки в истории маятниковых часов поставили два великих ученых - Галилео Галилей и Христиан Гюйгенс независимо друг от друга, создавшие часы с маятником, причем открытие законов колебания маятника пришло к Галилею тоже случайно. Кому-то на голову упадет кирпич -и ничего, даже сотрясения мозга не произойдет, а другому достаточно простого яблока, чтобы разбудить дремавшую в подсознании мысль для открытия закона всемирного тяготения. Великие случайности происходят, как правило, с великими личностями.

В 1583 году в Пизанском соборе любознательный юноша по имени Галилео Галилей не столько слушал проповедь, сколько любовался движением люстр. Наблюдения за светильниками показались ему интересными и, вернувшись домой, девятнадцатилетний Галилей изготовил опытную установку для исследования колебаний маятников - свинцовых шариков, укрепленных на тонких нитях. Собственный пульс служил ему хорошим секундомером.

Так, экспериментальным путем, Галилео Галилей открыл законы колебания маятника, которые сегодня изучают в каждой школе. Но Галилей в то время был слишком молод, чтобы думать о внедрении в жизнь своего изобретения. Вокруг столько интересного, надо спешить. И только в конце жизни, старый, больной и слепой старик, вспомнил о своих юношеских опытах. И его осенило - приставить к маятнику счетчик колебаний, - и получатся точные часы! Но силы Галилея были уже не те, ученый смог сделать только чертеж часов, завершил же работу его сын Винченцо, который вскоре умер и широкой огласки создание маятниковых часов Галилеем не получило.

Впоследствии Христиану Гюйгенсу всю жизнь необходимо было доказывать, что именно ему принадлежит честь создания первых маятниковых часов. По этому поводу в 1673 году он писал:
"Некоторые утверждают, что Галилей пытался сделать это изобретение, но не довел дело до конца; эти лица скорее уменьшают славу Галилея, чем мою, так как выходит, что я с большим успехом, чем он, выполнил ту же задачу".

Не так уж важно кто из этих двух великих ученых "первее" в деле создания часов с маятником. Гораздо значительнее то, что Христиан Гюйгенс не просто изготовил очередной тип часов, он создал науку хронометрию. С этого времени в деле конструирования часов был наведен порядок. "Лошадь" (практика) уже не бежала впереди "паровоза" (теории). Идеи Гюйгенса воплощал в жизнь парижский часовой мастер Исаак Тюре. Так увидели свет часы с различными конструкциями маятников, изобретенных Гюйгенсом.

Начало "карьеры" учителя физики
Феодосии Михайлович Федченко, родившийся в 1911 году ничего не знал о страстях по маятнику трехсотлетней давности. Да и вообще о часах он не думал. Его "карьера" началась в бедной сельской школе. Простой учитель физики вынужден был стать невольным изобретателем. Как же иначе, не имея должного оборудования, объяснить любознательным детишкам основополагающие законы природы.

Талантливый педагог конструировал сложные демонстрационные установки и, вероятно, его уроки школьники не пропускали. Война внесла коррективу в судьбу молодого изобретателя, Федченко стал незаурядным механиком танковых приборов. И вот первый звоночек судьбы - после окончания войны Феодосию Михайловичу предложили работу в Харьковском институте мер и измерительных приборов, в лаборатории, где среди научных тем была записана и такая: "Изыскание возможности увеличения точности хода часов со свободным маятником типа "Шорт"".

Его настольной книгой стал "Трактат о часах" Христиана Гюйгенса. Так заочно познакомился Ф. М. Федченко со своими знаменитыми предшественниками Христианом Гюйгенсом и Вильгельмом X. Шортом.

Предпоследняя точка в истории часов с маятником была поставлена английским ученым Вильгельмом X. Шортом. Правда, долгое время считалось, что создать часы с маятником точнее, чем часы Шорта невозможно. В 20-е годы XX века решили, что эволюция маятниковых приборов времени завершена. Каждая обсерватория не считалась достаточно оснащенной, если не имела астрономических часов Шорта, но платить за них приходилось золотом.

Один экземпляр часов Шорта приобрела Пулковская обсерватория. Английская фирма, установившая хранитель времени, запрещала к ним даже прикасаться, иначе снимала с себя всякую ответственность за настройку хитрого механизма. В 30-е годы Главной палате мер и весов в Ленинграде поручили разгадать секрет часов Шорта и начать изготавливать подобные устройства собственными силами. Талантливый метролог И. И. Кванберг долго разглядывал механизм часов через герметическое стекло цилиндра и попытался, не имея чертежей, изготовить копию. Копия была достаточно хорошей, но не идеальной. Всех английских тонкостей через стекло разглядеть было невозможно. Тем не менее, до войны на заводе "Эталон" было выпущено несколько экземпляров часов Кванберга.
Вот такую "простенькую" тему - изготовить часы точнее, чем это сделал Шорт - и поручили новичку Ф. М. Федченко, пришедшему после войны в харьковский институт.

Возвращение к истокам
Харьковский умелец установил, что еще в 1673 году Христиан Гюйгенс в "Трактате о часах" практически все сказал о том, как делать маятниковые часы. Оказывается, для того, чтобы часы были точными, необходимо, чтобы центр тяжести маятника в пространстве описывал не дугу окружности, а часть циклоиды: кривой, по которой движется точка на ободе колеса, катящегося по дороге. В этом случае колебания маятника будут изохронными, не зависящими от амплитуды. Сам Гюйгенс теоретически все обосновавший, пытался достичь цели, делая тысячи изобретений, но к идеалу не приблизился.

Последователи Гюйгенса, в том числе и Шорт, добивались точности другим путем -максимально изолировали маятник от внешних влияний, помещая точные часы глубоко в подвал, в вакуум, где минимально изменяется вибрация, температура
Федченко же, захотел осуществить мечту Гюйгенса и создать изохронный маятник. Говорят, что все идеальное - просто. Так и Федченко всего на всего подвесил маятник на три пружины - две длинные - по бокам и одну короткую - в середине. Казалось бы, ничего особенного, но на пути к открытию, были тысячи опытов. Были перепробованы пружины толстые и тонкие, длинные и короткие, плоские и с переменным сечением. Пять долгих лет терпеливой и кропотливой работы, неверие коллег, на него уже просто перестали обращать внимание и вдруг счастливый случай, благодаря элементарной ошибке в сборке подвеса.

Несколько винтов плохо закрутили, и подвес повел себя так, что маятник начал совершать изохронные колебания. Опыты проверяли и перепроверяли, все оставалось по-прежнему. Трех пружинный подвес маятника решал задачу Гюйгенса - при изменении амплитуды колебания, период оставался неизменным.
Столица, конечно, переманила талантливого изобретателя. В 1953 году Ф.М. Федченко перевели в Москву, в лабораторию маятниковых приборов времени создававшегося Всесоюзного научно-исследовательского института физико-технических и радиотехнических измерений.

Конечно, в Харькове это не понравилось. Федченко нанесли удар ниже пояса, - не отдали высокоточный импортный станок, стоивший громадных денег. В Москву изобретатель привез только три экземпляра первых опытных часов АЧФ-1. Для продолжения работы станок был необходим, в магазинах страны подобное оборудование не продавали. У частников, с трудом, но можно было найти нужный станок, и Федченко нашел. Но как платить? Наличные деньги в государственном учреждении не выдавали, тем более такую сумму -одиннадцать тысяч рублей.

Отчаявшийся Федченко, понимая, что без прецизионного оборудования он, как без рук, пошел на настоящую авантюру. Он напрямую обратился к управляющему Госбанка и нашел такие убедительные слова о значение своего изобретения, что умный и смелый человек, профессионал в своем деле, поверив мастеру, выдал ему нужную сумму наличными, в качестве документа потребовав просто расписку. Это один из примеров "очевидного, но невероятного".

Еще несколько десятилетий совершенствовали механизм астрономических часов Федченко, пока не появилась знаменитая модель - "АЧФ-3", принесшая славу, как автору, так и стране. Высокоточные часы демонстрировались на Всемирной выставке в Монреале, награждены медалями ВДНХ; описания часов включены в энциклопедии и в различные серьезные издания по хронометрии.

Блеск и трагедия изобретения Федченко
Ф. М. Федченко - создал высокоточные электронно-механические маятниковые часы в то время, когда уже начали появляться кварцевые, молекулярные и атомные приборы времени. Эти системы нельзя сравнивать. Каждая выполняет свои конкретные задачи и в своей области незаменима. Но, к сожалению, не все это понимают. Феодосии Михайлович Федченко никогда не был обделен вниманием ученых, своих коллег. Но вот чиновники, от которых часто зависит как судьба самого изобретателя, так и его изобретения, не всегда ведают, что творят.

В Госстандарте СССР относились к знаменитому конструктору прохладно. В 1973 году ВНИИФТРИ предложил выплатить изобретателю достойное вознаграждение за более чем двадцатипятилетнюю работу по созданию отечественных астрономических часов, принесших стране громадный экономический эффект и независимость от импорта прецизионных часовых механизмов. В Госстандарте сочли возможным урезать предложенное вознаграждение в 9 раз, сославшись на то, что "точность хода часов АЧФ-3 ниже действующих атомных часов". Конечно, ниже. Но атомные часы одни на всю страну, их обслуживает целый коллектив сотрудников, это Государственный эталон времени и частоты, а у часов Федченко совершенно другое назначение - это хранители времени. До сих пор часами Федченко оснащены многие телецентры, аэропорты, космодромы, обсерватории.

Разве кто-нибудь додумается сравнивать по скорости велосипед и космическую ракету. А в Госстандарте сравнили маятниковые часы Федченко, дающие погрешность в одну секунду за 15 лет с атомными часами, ошибающимися на ту же секунду за триста тысяч лет. Оценивать можно только аналогичного класса системы. Например, часы Федченко по сравнению с часами Шорта, намного дешевле, экономичнее, надежнее, удобнее в эксплуатации и на порядок точнее. Не будем обращать внимания на недальновидных и недобросовестных чиновников всех рангов. Главное, запомним, и будем гордиться, что наш соотечественник Феодосии Михайлович Федченко поставил последнюю точку в развитии маятниковых часов. Послушайте, как это гордо звучит - от Галилея и Гюйгенса до Федченко!

Мастер, конечно, знал цену себе и знал, что найдутся злопыхатели, которые попытаются умалить значение его изобретения. Чтобы не забыли о деле всей его жизни, Федченко сам пришел в 1970 году в Политехнический музей с предложением принять в дар и экспонировать часы его конструкции. Сегодня в маленьком зале московского музея можно увидеть многие шедевры часового искусства, в том числе и часы - изобретателя с большой буквы - Феодосия Михайловича Федченко

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «school-mon.ru» — Школьный понедельник - Образовательный портал