Наука опровергла самый известный миф о том, почему рушатся мосты. Великая сила резонанса Превышение допустимой нагрузки

под копытами эскадрона гвардейской кавалерии

рушится Египетский мост через реку Фонтанку в Петербурге.

Представь, что ты стоишь на раскачивающемся деревянном реечном мостике. Понятно, что если ты начнёшь сам раскачиваться в такт с качаниями мостика, то мостик начнёт раскачиваться ещё сильнее.

Настоящие современные мосты тоже, на самом деле, колеблются незаметно для невооружённого глаза. Архитекторы знают, что явление резонанса (то есть совпадения собственной частоты с частотой внешнего воздействия) может привести к катастрофическим последствиям.

Египетский цепной мост через Фонтанку


Так, 2 февраля 1905 года рухнул Египетский мост в городе Санкт-Петербурге, когда по нему проходил конный эскадрон. Считается, что причиной происшествия стало то, что всадники, гарцуя на лошадях, попали в резонанс с собственными колебаниями моста.
На школьных уроках физики, когда изучают явление резонанса, часто приводят пример этого разрушения, когда по мосту в одном направлении прошел «в ногу» эскадрон Конногвардейского полка, а в противоположном — 11 саней с возницами.
Обычно отряд военных делает 120 шагов в минуту, и эта частота (2 Гц) совпала с частотой собственных колебаний конструкции. С каждым шагом размах колебаний пролета увеличивался, и, наконец, мост не выдержал. Мост вошёл в резонанс и обрушился. Он был одним из пяти подвесных мостов в городе.
Вся настилка моста вместе с перилами и скреплениями, разорвав цепи и сломав часть чугунной опоры, проломала лед и оказалась на дне реки.
К счастью, обошлось без жертв, всем удалось выбраться на берег. Серьезно пострадавших, по официальным сведениям, не оказалось.
Впоследствии, военным было запрещено проходить по мостам в ногу. Появилась даже специальная команда: "Шагай вразнобой!".

Египетский мост через реку Фонтанку. Мост получил своё название из-за своеобразного оформления.

В настоящее время сфинксы - это все, что осталось от первого моста. Теперь этот мост не цепной и не подвесной.

А в 1940 году из-за резонансных колебаний разрушился Такомский мост в США. На фотографии видно, как его "перекрутило".

Мы часто слышим слово резонанс: «общественный резонанс», «событие, вызвавшее резонанс», «резонансная частота». Вполне привычные и обыденные фразы. Но можете ли вы точно сказать, что такое резонанс?

Если ответ отскочил у вас от зубов, мы вами по-настоящему гордимся! Ну а если тема «резонанс в физике» вызывает вопросы, то советуем прочесть нашу статью, где мы подробно, понятно и кратко расскажем о таком явлении как резонанс.

Прежде, чем говорить о резонансе, нужно разобраться с тем, что такое колебания и их частота.

Колебания и частота

Колебания – процесс изменения состояний системы, повторяющийся во времени и происходящий вокруг точки равновесия.

Простейший пример колебаний - катание на качелях. Мы приводим его не зря, этот пример еще пригодится нам для понимания сути явления резонанса в дальнейшем.

Резонанс может наступить только там, где есть колебания. И не важно, какие это колебания – колебания электрического напряжения, звуковые колебания, или просто механические колебания.

На рисунке ниже опишем, какими могут быть колебания.


Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Колебания характеризуются амплитудой и частотой. Для уже упомянутых выше качелей амплитуда колебаний - это максимальная высота, на которую взлетают качели. Также мы можем раскачивать качели медленно или быстро. В зависимости от этого будет меняться частота колебаний.

Частота колебаний (измеряется в Герцах) - это количество колебаний в единицу времени. 1 Герц - это одно колебание за одну секунду.

Когда мы раскачиваем качели, периодически раскачивая систему с определенной силой (в данном случае качели – это колебательная система), она совершает вынужденные колебания. Увеличения амплитуды колебаний можно добиться, если воздействовать на эту систему определенным образом.

Толкая качели в определенный момент и с определенной периодичностью можно довольно сильно раскачать их, прилагая совсем немного усилий.Это и будет резонанс: частота наших воздействий совпадает с частотой колебаний качелей и амплитуда колебаний увеличивается.


Суть явления резонанса

Резонанс в физике – это частотно-избирательный отклик колебательной системы на периодическое внешнее воздействие, который проявляется в резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определёнными значениями, характерными для данной системы.

Суть явления резонанса в физике состоит в том, что амплитуда колебаний резко возрастает при совпадении частоты воздействия на систему с собственной частотой системы.

Известны случаи, когда мост, по которому маршировали солдаты, входил в резонанс от строевого шага, раскачивался и разрушался. Кстати, именно поэтому сейчас при переходе через мост солдатам положено идти вольным шагом, а не в ногу.

Примеры резонанса

Явление резонанса наблюдается в самых разных физических процессах. Например, звуковой резонанс. Возьмём гитару. Само по себе звучание струн гитары будет тихим и почти неслышным. Однако струны неспроста устанавливают над корпусом – резонатором. Попав внутрь корпуса, звук от колебаний струны усиливается, а тот, кто держит гитару, может почувствовать, как она начинает слегка «трястись», вибрировать от ударов по струнам. Иными словами, резонировать.

Еще один пример наблюдения резонанса, с которым мы сталкиваемся - круги на воде. Если кинуть в воду два камня, попутные волны от них встретятся и увеличатся.

Действие микроволновки также основано на резонансе. В данном случае резонанс происходит в молекулах воды, которые поглощают излучение СВЧ (2,450 ГГц). Как следствие, молекулы входят в резонанс, колеблются сильнее, а температура пищи повышается.


Резонанс может быть как полезным, так и приносящим вред явлением. А прочтение статьи, как и помощь нашего студенческого сервиса в трудных учебных ситуациях, принесет вам только пользу. Если в ходе выполнения курсовой вам понадобится разобраться с физикой магнитного резонанса, можете смело обращаться в нашу компанию за быстрой и квалифицированной помощью.

Напоследок предлагаем посмотреть видео на тему «резонанс» и убедиться в том, что наука может быть увлекательной и интересной. Наш сервис поможет с любой работой: от реферата "Сеть интернет и киберпреступность" до курсовой по физике колебаний или эссе по литературе.

Прежде чем приступить к знакомству с явлениями резонанса, следует изучить физические термины, связанные с ним. Их не так много, поэтому запомнить и понять их смысл будет несложно. Итак, обо всем по порядку.

Что такое амплитуда и частота движения?

Представьте обычный двор, где на качелях сидит ребенок и машет ножками, чтобы раскачаться. В момент, когда ему удается раскачать качели и они достигают из одной стороны в другую, можно подсчитать амплитуду и частоту движения.

Амплитуда - это наибольшая длина отклонения от точки, где тело находилось в положении равновесия. Если брать наш пример качелей, то амплитудой можно считать наивысшую точку, до которой раскачался ребенок.

А частота - это количество колебаний или колебательных движений в единицу времени. Измеряется частота в Герцах (1 Гц = 1 колебание в секунду). Возвратимся к нашим качелям: если ребенок проходит за 1 секунду только половину всей длины качания, то его частота будет равна 0,5 Гц.

Как частота связана с явлением резонанса?

Мы уже выяснили, что частота характеризует число колебаний предмета в одну секунду. Представьте теперь, что слабо качающемуся ребенку взрослый человек помогает раскачаться, раз за разом подталкивая качели. При этом данные толчки также имеют свою частоту, которая будет усиливать либо уменьшать амплитуду качания системы "качели-ребенок".

Допустим, взрослый толкает качели в то время, когда они движутся навстречу к нему, в таком случае частота не будет увеличивать амлитуду движения То есть сторонняя сила (в данном случае толчки) не будет способствовать усиления колебания системы.

В случае если частота, с которой взрослый раскачивает ребенка, будет численно равна самой частоте колебания качелей, может возникнуть являение резонанса. Другими словами, пример резонанса - это совпадение частоты самой системы с частотой вынужденных колебаний. Логично представить, что частота и резонанс взаимосвязаны.

Где можно наблюдать пример резонанса?

Важно понимать, что примеры проявления резонанса встречаются практически во всех сферах физики, начиная от звуковых волн и заканчивая электричеством. Смысл резонанса заключается в том, что когда частота вынуждающей силы равна собственной частоте системы, то в этот момент достигает наивысшего значения.

Следующий пример резонанса даст понимание сути. Допустим, вы шагаете по тонкой доске, перекинутой через речку. Когда частота ваших шагов совпадет с частотой или периодом всей системы (доска-человек), то доска начинает сильно колебаться (гнуться вниз и вверх). Если вы продолжите двигаться такими же шагами, то резонанс вызовет сильную амплитуду колебания доски, которая выходит за пределы допустимого значения системы и это в конечном счете приведет к неминуемой поломке мостика.

Существуют также те сферы физики, где можно использовать такое явление, как полезный резонанс. Примеры могут удивить вас, ведь обычно мы используем его интуитивно, даже не догадываясь о научной стороне вопроса. Так, например, мы используем резонанс, когда пытаемся вытащить машину из ямы. Вспомните, ведь легче всего достичь результат только тогда, когда толкаешь машину в момент ее движения вперед. Этот пример резонанса усиливает амплитуду движения, тем самым помогая вытащить машину.

Примеры вредного резонанса

Сложно сказать, какой резонанс в нашей жизни встречается больше: хороший или же наносящий нам вред. Истории известно немалое количество ужасающих последствий явления резонанса. Вот самые известные события, на которых можно наблюдать пример резонанса.

  1. Во Франции, в городе Анжера, в 1750 году отряд солдат шел в ногу через цепной мост. Когда частота их шагов совпала с частотой моста, размахи колебаний (амплитуда) резко увеличились. Наступил резонанс, и цепи оборвались, а мост обрушился в реку.
  2. Бывали случаи, когда в деревнях дом был разрушен из-за проезжающего по главной дороге грузового автомобиля.

Как видите, резонанс может иметь весьма опасные последствия, вот почему инженерам следует тщательно изучать свойства строительных объектов и правильно вычислять их частоты колебаний.

Полезный резонанс

Резонанс не ограничивается только плачевными последствиями. При внимательном изучении окружающего мира можно наблюдать множество хороших и выгодных для человека результатов резонанса. Вот один яркий пример резонанса, позвляющий получать людям эстетическое удовольствие.

Устройсто многих музыкальных инструментов работает по принципу резонанса. Возьмем скрипку: корпус и струна образуют единую колебательную систему, внутри которой имеется штифт. Именно через него передаются частоты колебаний из верхней деки в нижнюю. Когда лютьер водит смычком по струне, то последняя, подобно стреле, побеждает своей трение канифольной поверхности и летит в обратную сторону (начинает движение в противоположную область). Возникает резонанс, который передается в корпус. А внутри его есть специальные отверстия - эфы, сквозь которые резонанс выводится наружу. Именно таким образом он контролируется во многих струнных инструментах (гитара, арфа, виолончель и др).

Повсеместно и ежедневно нам в нашей жизни сопутствуют колебательные системы.
Первое впечатление в жизни - это качели. На этом отнюдь не простейшем примере можно наблюдать и зависимость периода колебаний от веса того, кто качается, а также проблему синфазности движения качелей с внешней раскачивающей силой. Далее, идет знакомство с музыкальными инструментами, так или иначе использующими разного рода колебательные системы для получения музыкальных звуков. Ну, и в конце концов, вся, полностью обнимающая нас электроника, основным и непременным узлом которой является кварцевый резонатор - так сказать, рафинированная колебательная система.
И вместе с тем, так ли уж много мы понимаем в этом...
Самое четкое определение колебательной системы дал лорд Кельвин при открытии им электрического L-C колебательного контура в 1878-м году. Обнаружив, что при ударном воздействии на колебательный контур возникает синусоидальный (гармонический) затухающий процесс, Кельвин заявил, что это является доказательством того, что имеет место новая, неизвестная ранее колебательная система.
Таким образом, можем сформулировать, что колебательной системой является устройство, которое имеет механизм преобразования ударного воздействия в гармонический затухающий процесс.
Но вот интересно то, что это определение мы можем приложить не ко всем известным и применяемым колебательным системам. Это происходит потому, что для этих устройств, являющихся безусловно колебательными системами (по определению Кельвина), сам механизм преобразования удара в синусоиду далеко не всегда известен.
Что касается разного рода маятников, пружин и колебательных контуров, то механизмы их колебательности изучены и рассмотрены. Однако существуют колебательные системы, механизм которых неизвестен, несмотря на очень широкое их применение. Так, до недавних пор оставалось неизвестным, каким образом выполняют роль колебательной системы, скажем, кварцевые резонаторы.
Эффект кварцевого резонатора был обнаружен еще в 1917 году, но признать его непонятность почему-то постеснялись. В силу этой стеснительности была предложена модель кварцевого резонатора в виде его эквивалента некоторой совокупности нескольких виртуальных конденсаторов и катушек индуктивности. Такое вот как бы моделирование почему-то названо научным описанием кварцевых резонаторов, это все называется теорией, и такого рода научной и учебной литературы существует видимо-невидимо.
Понятно, что никаких - ни виртуальных, ни реальных конденсаторов в кварцевых резонаторах не присутствует, и вся эта наукообразная макулатура к этим резонаторам никак не относится. Дело в том, что на практике частота кварцевого резонатора f 0 определяется толщиной кварцевой пластины h , и при изготовлении ее пользуются следующей эмпирической формулой:

f 0 = k / h , где (1)

k - технологический коэффициент.
Так вот, во всей существующей литературе о кварцевых резонаторах мы не найдем ни упоминания этого эмпирического соотношения, ни вообще какой-либо информации о связи собственной частоты резонатора с размерами пластины.
Спустя 60 лет после открытия свойств кварцевых пластин, в 1977 году, было обнаружено, что резонаторами являются не только кварцевые пластины, но и объекты из подавляющего большинства твердых сред (металлы и сплавы, стекло, керамика, горные породы). При этом оказалось, что количество собственных частот этих резонаторов равно количеству их размеров. Так, сплошной шар, допустим, из стекла, имеет всего один размер - диаметр d , и, соответственно, одну собственную частоту f 0 , связь между которыми, как оказалось, определяется соотношением (1). Пластина, имеющая толщину h и размеры a и b , имеет три собственные частоты, каждая из которых связана с соответствующим размером соотношением (1).
Наличие резонансных свойств перечисленных выше объектов выявляется очень просто, и даже несколькими способами. В шахтных условиях, в случае слоистых пород, наиболее простой способ состоит в том, что к исследуемому объекту (к породам кровли) прижимают датчик поля упругих колебаний (сейсмоприемник), и наносят по поверхности кровли короткий удар. Реакция на удар будет выглядеть как затухающий гармонический сигнал. В лабораторных условиях этот метод является неприемлемым, поскольку получить требуемые параметры удара для небольших образцов очень непросто. В лаборатории оказалось проще использовать исследование образца с помощью ультразвуковых установок.
Как оказалось, резонансные свойства кварцевого резонатора не являются чем-то уникальным и зависящим от наличия пьезоэффекта. Наличие же пьезоэффекта лишь упрощает индикацию и использование этого свойства. Так, исследуя резонансные свойства пьезокерамического диска, его в процессе эксперимента можно нагреть до температуры, превышающей точку Кюри, при которой пьезоэффект исчезает, а резонансные свойства его никак не изменятся.
Однако если ученым, изучавшим кварцевые резонаторы, удалось уйти от поиска физики их резонансных свойств, то мне пришлось ею заняться вплотную. Дело в том, что, несмотря на фактически существующих резонансных проявлений, исходя из общих соображений, пластина из однородного материала не должна проявлять резонансные свойства. В такой пластине должен отсутствовать механизм преобразования ударного воздействия в гармонический сигнал.
Нельзя сказать, что эта точка зрения ошибочна, потому что есть материалы, объекты из которых не являются резонаторами. И действительно, в таком материале как плексиглас (оргстекло) и некоторых других, этот механизм отсутствует. Объекты из плексигласа резонаторами не являются. При ударном воздействии на пластину из оргстекла реакция имеет вид последовательности затухающих коротких импульсов. То есть, полностью соответствует положениям общепринятой акустики твердых сред.
Вместе с тем, как оказалось (в 1977 году), породные слои проявляют резонансные свойства, и с помощью соотношения (1) оказалось возможным без бурения (!) определять строение породной толщи. Ну понятно же, что использовать физический эффект при том, что не составляет труда доказать невозможность его существования, весьма затруднительно. Кроме того, использование этого эффекта в шахтах позволило создать методику прогнозирования обрушения пород кровли - явления, которое дает 50% травматизма шахтеров во всем Мире. А вот внедрять в практику методику, основанную на столь сомнительном физическом эффекте было совершенно невозможно.
На поиски отличия плексигласа от тех материалов, объекты из которых являются резонаторами, ушло 4 года. И где-то в 1981-м году было обнаружено, что различие это есть, и оно касается акустических свойств приграничных зон подавляющего большинства твердых сред.
Оказалось, что акустические свойства приповерхностных зон сред, объекты из которых проявляют свойства резонаторов, таковы, что скорость распространения фронта V fr при нормальном прозвучивании непостоянна, и уменьшается с приближением фронта к поверхности.
На рис.1 приведен случай нормального прозвучивания пластины-резонатора 1 толщиной h . Зависимость V fr (х) , а также минимальное и максимальное значения V fr и величины зон Δ h получены на основании измерений, выполненных на множестве пластин из одного и того же материала, но имеющих различные толщины. Среднее значение скорости V fr . mid - это то значение, которое получается при определении скорости по моменту первого вступления.
При подобных же исследованиях пластин из оргстекла скорость V fr . mid при изменении толщины пластины h остается постоянной, из чего можно сделать вывод о том, что в оргстекле (пластина-нерезонатор) зоны Δ h отсутствуют.
При излучении диском-излучателем 1 гармонического сигнала, на собственной частоте прозвучиваемой пластины-резонатора f 0 , то есть, на резонансе, э.д.с. на диске-приемнике 3 исчезает, но появляется на диске-приемнике 4 . Этот эффект называется акустическим резонансным поглощением (АРП) .

Рис. 1

Пьезокерамический диск-излучатель 2 , прозвучиваемая пластина 1 и пьезокерамические диски-приемники 3 и 4 находятся в жидкости (вода или масло).
Таким образом, на резонансе происходит переориентация первичного поля, излученного пьезопреобразователем 1 , в ортогональном направлении. Поворот поля в ортогональном направлении происходит при наличии приповерхностных зон Δ h .
Связь между наличием зон Δ h и поворотом поля в ортогональном направлении довольно проста. Дело в том, что скорость движения какого-либо объекта или скорость распространения какого-либо процесса не может изменяться без внешнего воздействия. Поэтому на самом деле, в зоне Δ h изменяется не скорость распространения фронта V fr , а ее x -составляющая, что возможно только при наличии возникновения y -составляющей. Иначе говоря, вектор остается постоянным по величине, но в зонах Δ h происходит поворот вектора V fr .
То есть, получается, что при ударном воздействии на слой-резонатор его поверхности становятся излучателями его собственной частоты f 0 , а при гармоническом излучателе слой-резонатор становится на резонансе звуконепрозрачным. Но в обоих случаях, при любом воздействии, вдоль слоя-резонатора распространяется поле упругих колебаний с частотой f 0 .
Акустическая изоляция слоя-резонатора на его собственной частоте от прилегающих к нему объектов использовалась весьма давно. Так, замечено, что если приложить ухо к земле, то конницу слышно на колоссальных расстояниях. На самом деле, это не конницу слышно, а собственные колебания породного слоя-резонатора, возбуждаемого конскими копытами. Весьма слабое затухание поля, распространяющегося вдоль слоя-резонатора, как раз и есть следствие акустической изоляции его от прилегающих к нему пород.
При ударном воздействии на породный массив при сейсморазведочных работах возникающее при этом поле упругих колебаний распространяется вдоль напластования пород. Это противоречит основам сейсморазведки, согласно которым поле, возникающее в результате удара, распространяется во все стороны.
Это очень серьезный момент для понимания принципа действия сейсморазведки. Получается, что сигналы, получаемые на сейсмограммах, приходят не снизу, не из глубины, а сбоку, поскольку распространяются исключительно ВДОЛЬ напластования.
При спектральном анализе сейсмосигналов оказалось, что соотношение (1) выполняется при величине коэффициента k в числителе, равном 2500м/с. При этом погрешность определения толщины породного слоя не превышает 10%.
Надо полагать, что процесс, сориентированный в направлении y при направленном излучении в направлении x , является поперечным. И, таким образом, можно утверждать, что собственный колебательный процесс формируется поперечными волнами, а коэффициент k есть не что иное, как скорость поперечных волн V sh .
Обнаружение, по сути, новых, неизвестных ранее колебательных систем требует перестройки мышления. Когда в свое время было обнаружено, что Земля - шар, то осознание этого, а также переход от геоцентрической к гелиоцентрической системе, потребовали перестройки сознания жителей Земли. Однако перестройка эта шла несколько столетий, поскольку особого изменения алгоритмов жизненных условий эта новая информация не потребовала. Сейчас ситуация несколько другая.
В связи с тем, что наша планета состоит в значительной степени из породных слоев, получается, что в целом она представляет собой совокупность колебательных систем. А это значит, что любое воздействие на поверхность Земли должно вызывать реакцию в виде совокупности гармонических затухающих процессов. В случае же, если воздействие вибрационное, то оказываются возможными резонансные явления.
При рассмотрении резонансных явлений возникает потребность в учете характерного для колебательных систем параметра - добротности Q. В самом определении добротности скрыта информация о колоссальных разрушительных возможностях резонанса. Добротность Q показывает, во сколько раз увеличивается амплитуда вибрации в случае резонанса.
Реальные значения Q для колебательных систем, реализуемых залегающими в земной толще геологическими структурами, могут достигать нескольких сотен. И если в зоне такой вот высокодобротной колебательной системы окажется объект, оказывающий на грунт вибрационное (динамическое) воздействие, то именно во столько раз увеличится амплитуда вибрации этого объекта.
Однако рост величины вибрации имеет вполне определенные ограничения. Эти ограничения определяются тем, что при некоторой амплитуде вибрации возникает превышение упругих деформаций и наступает разрушение. Разрушиться может грунт, на который оказывается вибрационное воздействие, и это проявляется мгновенным, взрывоподобным проседанием, с образованием воронки. При армировании грунта разного рода железобетонными конструкциями (например, железобетонная плотина ГЭС), могут не выдержать и порваться шпильки, на которых к плотине крепится генератор.
При небольших значениях Q (скажем, до 10) резонанс проявляется повышенной вибрацией. Это неприятно для обслуживающего персонала, это приводит к образованию разного рода люфтов и дисбаланса работающего механизма, но сокрушительного, мгновенного разрушения такой низкодобротный резонанс не вызовет.
В случае, если Q существенно больше того предельного значения, при котором амплитуда вибрации вызывает неизбежное разрушение, резонанс может существовать только кратковременно. Так, допустим, что при штатной частоте вибрации динамо-машины 50 Гц, непосредственно под этой установкой залегает геологическая структура, имеющая собственную частоту, скажем, 25 Гц при добротности Q=200. Тогда в течение всего срока штатной эксплуатации вибрация будет в пределах нормы. Однако предположим, что машину по какой-то причине нужно остановить, и тогда, в процессе остановки, в течение какого-то времени, частота ее вращения окажется близкой к резонансной, к 25 Гц. В зоне резонанса начнется плавный рост амплитуды вибрации. И здесь вопрос в том, насколько быстро частота вращения ротора минует зону резонанса, и успеет ли амплитуда вибрации возрасти до разрушительного значения.
Нетрудно заметить, что здесь в качестве примера была рассмотрена ситуация, которая сложилась на Саяно-Шушенской ГЭС. Там вибрация гидроагрегатов в нормальном, рабочем режиме возросла до неприемлемых значений. И когда было принято решение об остановке, скорость стали уменьшать весьма медленно. В результате, при прохождении зоны высокодобротного резонанса амплитуда вибрации успела возрасти настолько, что не выдержали шпильки, крепившие гидроагрегат. И, кстати, самописцы гидроагрегата показали возрастание вибрации в 600 раз.
Характерным признаком, предвестником резонансного разрушения является рост вибрации.
Первое достоверное свидетельство о наличии такого предвестника имело место при аварии на ЧАЭС. Там ведь все началось при изменении режима реактора и, соответственно, скорость вращения агрегатов. При этом началась вибрация, амплитуда которой стала быстро увеличиваться, достигла такого уровня, что люди в панике стали покидать эту зону. Оборвалась вибрация сейсмотолчком (взрывоподобным разрушением грунта), отмеченным сейсмологами. И только через полминуты после этого произошло разрушение реактора.
В дальнейшем, появлялась информация о том, что этот предвестник имеет место при разрушении разного рода насосных станций. Точно так же, при изменении частоты вибрации компрессора вдруг начинается рост амплитуды вибрации, завершающийся провалом в грунт оборудования. В качестве причины такого события обычно называют либо теракт, либо некачественные сваи, на которых стоит станция.
Зачастую имеют место железнодорожные аварии, когда без всяких видимых причин поезд рвется на две части, когда вдруг, внезапно, взрывоподобно разрушается насыпь с образованием углубления, и в эту воронку проваливаются мгновенно разрушившиеся шпалы и куски рельсов. Именно в этот момент разрушения пути рвется состав. Однако в вагоне, который оказывается последним из проскочивших эту зону, имеет место сильнейшая вибрация, которая обрывается мгновенным разрушением насыпи.
13-го августа 2007 года в Новгородской области произошла такая авария с поездом N166 Москва - Петербург. Позже очевидцы описали , что произошло: «...сначала поезд начало трясти, после чего последовал хлопок. Проводники, которые не один год работают на этом маршруте, потом признавались, что стали прощаться с жизнью, так как на их памяти такое произошло в первый раз». Ключевой момент - это то, что очевидцы перед ударом ощутили сильную вибрацию.
3 марта 2009 года в Кельне внезапно обрушилось шестиэтажное здание архива. Как сообщило агентство Reuters , перед обрушением наблюдался грохот и сильная вибрация. «Стол, за которым я сидел, качнулся, и я подумал, что кто-то случайно задел его ногой, - сказал один из посетителей архива. - Потом все начало трястись, как во время землетрясения ». Дом превратился в груду кирпичей буквально за секунды. Представитель полиции сказал журналистам, что «это было похоже на взрыв»: кирпичи, доски и куски цемента разлетелись по тротуару в радиусе до 70 метров. Под зданием архива проходит ветка метро, тоннель которой тоже обвалился. Источник вибрации, как оказалось, находился в тоннеле метро. Этим источником была работавшая там буровая установка.
Подробно физика резонансных разрушений рассмотрена в работах . Здесь же представляется необходимым поставить следующий вопрос. Является общеизвестным, что нарастание амплитуды вибрации, обрывающееся взрывоподобным разрушением однозначно связано с резонансными явлениями. Так почему же мы никогда не слышим слова «резонанс» при расследовании катастроф, имевших такой предвестник? Причина оказалась чисто психологической. Согласно укоренившемуся мнению, в земной толще НЕТ никаких колебательных систем. А если нет колебательных систем, значит, не может быть речи о резонансе.
Если все же допустить предположение о резонансе, то неизбежен вопрос о колебательной системе. Потому что без колебательной системы не может быть резонанса.
Далее, если допустить, что земная толща действительно представляет собой совокупность колебательных систем, то это подрывает устои сейсморазведки. Ведь рассмотрение сейсморазведки возможно только в рамках ее общепринятой модели, согласно которой земная толща представляет собой совокупность отражающих границ.
Не имеет значения, дает сейсморазведка информацию или нет, потому что это колоссальный, многомиллиардный бизнес, который трогать нельзя. Бизнес, построенный на фальсификациях, но столь огромный, что сейсморазведка уже не нуждается в том, чтобы ее кто-то подтверждал.
Сейчас уже нет, наверное, функционирующих ученых, кто бы не знал, что является доказанным факт того, что планета наша - это совокупность колебательных систем. Но теперь у них главная задача - сделать вид, что они этого не знают. Любое открытие в той или иной степени перечеркивает предыдущий уровень знания. Да, действительно, если бы эта точка зрения была освоена и принята, количество техногенных катастроф пошло бы на убыль. Но увы, ученым это не нужно. Для них главное - уцелеть до конца жизни на достигнутом уровне, и чтобы никто не перечеркивал тот уровень знания, на котором они достигли своих высот. И это безусловно по значимости перевешивает для них все те катастрофы, которые можно было бы предотвратить.

ЛИТЕРАТУРА

  1. Гликман А.Г. Эффект акустического резонансного поглощения (АРП) как основа новой парадигмы теории поля упругих колебаний .
  2. Свидетельство проводников Северного Экспресса www.newsru.com/russia/14aug2007/train.html
  3. Свидетельство разрушения архива в Кельне www.gazeta.ru/social/2009/03/04/2952320.shtml
  4. Гликман А.Г. Вибрация и резонансные явления в нашей жизни (что произошло на Саяно-Шушенской ГЭС)
  5. Гликман А.Г. Планета Земля как совокупность колебательных систем и техногенные и природные землетрясения как следствия из этого

Физики разработали модель, с помощью которой можно оценить критическое количество шагающих по мосту пешеходов, которое приведет к его резкому раскачиванию. По словам авторов исследования, опубликованного в Science Advances , предложенная ими модель позволит в будущем строить более безопасные пешеходные мосты.

Несмотря на то, что при проектировании пешеходных подвесных мостов сейчас используются самые современные пакеты для компьютерного моделирования, все равно иногда наблюдаются ситуации, когда из-за большого количества пешеходов на мосту он внезапно начинает сильно колебаться. Иногда эти колебания могут быть настолько сильными, что становятся причиной возникновения небезопасных ситуаций и разрушения части конструкций. Наиболее показательными примерами являются открытие моста Сольферино в Париже в 1999 году или регулярно раскачивавшийся мост Миллениум в Лондоне, который пришлось из-за этого перестраивать вскоре после открытия.

Раскачивающийся мост является классической колебательной системой, в которой шагающие пешеходы являются источниками внешней периодической силы. При совпадении собственной частоты колебаний моста с частотой внешней силы система приходит в резонанс, и амплитуда колебаний резко увеличивается. Если же источников внешней силы много и у всех них одинаковая частота (то есть пешеходы совершают одинаковое количество шагов за одинаковые промежутки времени), то между ними может еще происходить синхронизация фазы, когда все начинают шагать одновременно. Именно синхронизацию фазы обычно называют основной неучтенной причиной при проектировании, которая приводит к возникновению резонансных колебаний на реальных мостах. Несмотря на актуальность проблемы, все предыдущие модели, описывающие такой механизм, не могли объяснить пороговый эффект такого явления: при числе пешеходов меньше критического мост почти не раскачивается, но как только количество пешеходов, шагающих в ногу, превысит определенное значение, наблюдается резкое увеличение амплитуды поперечных колебаний.

Группа физиков из США и России под руководством Игоря Белых (Igor Belykh) из Университета штата Джорджия предложила новую модель, которая, помимо остальных параметров, учитывает и биомеханику человеческого тела в момент совершения шага. В рассматриваемой системе сам мост является колебательной системой, в которой под действием шагающих пешеходов возникают затухающие вертикальные колебания. Для описания шагающего человека рассмотрели две биомеханические модели (более полную и ее упрощенный аналог), которые учитывают, что в ответ на вертикальное колебание моста человек наклоняется в сторону и возбуждает таким образом поперечные колебания.


Схема рассматриваемой физической системы. Слева изображен мост, в котором шагающие пешеходы возбуждают его колебания, справа - человек, который реагирует на движение моста, вызывая тем самым его поперечные колебания

I. Belykh et al./ Science Advances

Точного аналитического решения для полученной системы уравнений нет, поэтому для нахождения решений авторы работы использовали численные методы. В отличие от всех предыдущих, предложенная модель привела к возникновению порогового эффекта. Если все пешеходы шагают в ногу, то при увеличении числа людей на мосту может внезапно возникнуть неустойчивость. Для подтверждения работы модели, физики проверили ее для описания раскачивания лондонского моста Миллениум, для которого даже известно точное количество человек, которое приводило к резонансу - 165.

При этом такой же эффект наблюдался и в случае, когда частота шага у разных пешеходов немного варьировалась, что еще сильнее приближает модель к реальности. Кроме того, оказалось, что наличие синхронизации фазы критично только для колебания очень тяжелых мостов (как тот же мост Миллениум, который весит около 130 тонн) с большой амплитудой. Возбуждение же колебаний с маленькой амплитудой возможно даже без синхронизации фазы. Такие случаи тоже наблюдались в реальности, и одним из возможных механизмов возбуждения колебаний даже единственным источником ученые называют смену скорости шага при движении по мосту.

В своей работе физики выразили надежду, что предложенная ими модель будет в дальнейшем использоваться для более точного проектирования безопасных подвесных и пешеходных мостов.

Для диагностики повреждений, которые появляются на крупных мостах, сейчас используются различные методы, основанные на исследовании механических характеристик и выявлении дефектов с помощью ультразвука. Недавно для осмотра мостов, в том числе и их подводных частей, дроны.

Александр Дубов

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «school-mon.ru» — Школьный понедельник - Образовательный портал