Цикл Кребса – центральный путь обмена веществ. Цикл лимонной кислоты (цикл Кребса) Часть аминокислот вовлекается в цикл кребса

Метаболизм

Метаболизм – это энергетический обмен, происходящий в нашем организме. Мы вдыхаем кислород и выдыхаем углекислый газ. Только живое существо может что-то брать из окружающей среды и обратно возвращать в другом виде.

Допустим, мы решили позавтракать и съели хлеб с курицей. Хлеб - это углеводы, курица – это белки.
В течении этого времени переваренные углеводы распадутся до моносахаридов, а белки до аминокислот.
Это начальная стадия – катаболизм. На этой ступени по своему строению сложные распадаются на более простые.

Также, в качестве примера можно привести обновление поверхности кожи. Они постоянно меняются. Когда верхний слой кожи отмирает, макрофаги убирают омертвевшие клетки и появляется новая ткань. Она создается путем сбора белка из органических соединений. Это протекает в рибосомах. Совокупность действий возникновения сложного состава (белка) из простого (аминокислот) называется анаболизмом.

Анаболизм:

  • рост,
  • увеличение,
  • расширение.

Катаболизм:

  • расщепления,
  • деление,
  • уменьшения.

Название можно запомнить, просмотрев фильм «Анаболики». Там идет речь о спортсменах, применяющих анаболические препараты для роста и увеличения мышечной массы.

Что такое Цикл Кребса?

В 30 годы 20 века ученый Ганс Кребс занимается изучение мочевины. Затем он переселяется в Англию и приходит к такому выводу, что некоторые ферменты катализируются в нашем теле. За это ему вручили Нобелевскую премию.

Мы получаем энергию благодаря глюкозе, содержащейся в эритроцитах. Действию перехода декстроза в энергию помогают митохондрии. Затем конечный продукт превращается в аденозинтрифосфат или АТФ. Именно АТФ является главной ценностью организма. Получаемое вещество насыщает энергией и органы нашего тела. Сама по себе глюкоза не может видоизмениться в АТФ, для этого нужны сложные механизмы. Этот переход и называется Циклом Кребса.

Цикл Кребса — это постоянные химические превращения, происходящие внутри каждого живого существа. Так оно называется, так как процедура повторяется без остановки. В итоге этого явления мы приобретаем аденозинтрифосфорную кислоту, которая считается жизненно важной для нас.

Важным условием является дыхание клетки. Во время прохождения всех стадий обязательно должен присутствовать кислород. На данном этапе также происходит создание новых аминокислот и углеводов. Эти элементы играют роль строителей организма, можно сказать это явление выполняет еще одну значительную роль — строительную. Для эффективности этих функций нужны и другие микро и макроэлементы и витамины. При недостатке хоть одного элемента, работа органов нарушается.

Этапы цикла Кребса

Здесь происходит деление одной молекулы глюкозы на две части пировиноградной кислоты. Она является важным звеном в процессе обмена веществ и от нее зависит работа печени. Она имеется во многих фруктах и ягодах. Ее часто используют в косметических целях. В результате еще может появиться молочная кислота. Она содержится в клетках крови, мозга, мышц. Затем мы получим кофермент А. Его функция — перенос углерода в разные части тела. При присоединении с оксалатом получаем цитрат. Кофермент А полностью распадается, также получаем молекулу воды.

На втором вода отделяется от цитрата. В итоге появляется акатиновое соединение, она поможет при получении изоцитрата. Так, например, мы можем узнать качество фруктов и соков, нектаров. Образуется NADH — оно необходимо при окислительных процессах и обмене веществ.
Происходит процесс соединения с водой, и высвобождается энергия аденозинтрифосфата. Получение оксалоцетата. Функционирует в митохондриях.

По каким причинам замедляется энергетический обмен?

Наше тело имеет особенность адаптироваться к еде, к жидкости и тому, сколько мы двигаемся. Эти вещи сильно влияют на метаболизм.
Еще в те далекие времена человечество выживало в тяжелых погодных условиях при болезнях, голоде, неурожае. Сейчас медицина двинулась вперед, поэтому в развитых странах люди стали дольше жить и лучше зарабатывать, не прикладывая всех своих сил. В наши дни люди чаще употребляют мучные, сладкие кондитерские изделия и мало двигаются. Такой образ жизни ведет к замедлению работы элементов.

Чтобы этого не было, в первую очередь необходимо включить в рацион цитрусовые. В них содержится комплекс витаминов и других важных веществ. Большую роль играет лимонная кислота, содержащаяся в ее составе. Она играет роль в химическом взаимодействии всех ферментов и названа в честь Цикла Кребса.

Прием цитрусовых поможет решить проблему энергетического взаимодействия, также если соблюдать здоровый образ жизни. Нельзя часто принимать в пищу апельсины, мандарины, так как они могут раздражать стенки желудка. Всего понемногу.

Каждому известно, что для нормальной работы организм нуждается в регулярном поступлении целого ряда питательных веществ, которые нужны для здорового метаболизма и, соответственно, баланса процессов выработки и расходования энергии. Процесс выработки энергии, как известно, протекает в митохондриях, которые благодаря этой особенности и получили название энергетических центров клеток. А последовательность химических реакций, которая позволяет получить энергию для работы каждой клеточки тела, называется циклом Кребса.

Цикл Кребса - чудеса, которые происходят в митохондриях

Энергия, получаемая посредством цикла Кребса (также ЦТК - цикл трикарбоновых кислот), идет на нужды отдельных клеток, которые в свою очередь составляют различные ткани и, соответственно, органы и системы нашего организма. Поскольку без энергии организм попросту не может существовать, митохондрии постоянно работают над тем, чтобы бесперебойно поставлять в клетки необходимую им энергию.

Аденозин трифосфат (АТФ) - именно это соединение является универсальным источником энергии, необходимым для протекания всех биохимических процессов в нашем организме.

ЦТК - это центральный метаболический путь, в результате которого завершается окисление метаболитов:

  • жирных кислот;
  • аминокислот;
  • моносахаридов.

В процессе аэробного распада эти биомолекулы расщепляются на меньшие молекулы, которые используются для получения энергии или синтеза новых молекул.

Цикл трикарбоновых кислот состоит из 8 этапов, т.е. реакций:

1. Образование лимонной кислоты:

2. Образование изолимонной кислоты:

3. Дегидрирование и прямое декарбоксилирование изолимонной кислоты.

4. Окислительное декарбоксилирование α-кетоглутаровой кислоты

5. Субстратное фосфорилирование

6. Дегидрирование янтарной кислоты сукцинат-дегидрогеназой

7. Образование яблочной кислоты ферментом фумаразой

8. Образование оксалацетата

Таким образом, после завершения реакций, которые составляют цикл Кребса:

  • одна молекула ацетил-КоА (образованная в результате распада глюкозы) окисляется до двух молекул углекислого газа;
  • три молекулы NAD восстанавливаются до NADH;
  • одна молекула ФАД восстанавливается до ФАДН 2 ;
  • образуется одна молекула ГТФ (эквивалент АТФ).

Молекулы НАДН и ФАДН 2 действуют как переносчики электронов и используются для образования АТФ на следующей стадии метаболизма глюкозы - окислительном фосфорилировании.

Функции цикла Кребса:

  • катаболическая (окисление ацетильных остатков топливных молекул до конечных продуктов обмена);
  • анаболическая (субстраты цикла Кребса - основа для синтеза молекул, в т.ч. аминокислот и глюкозы);
  • интегративная (ЦТК - связующее звено между анаболическими и катаболическими реакциями);
  • водорододонорная (поставка 3 НАДН.Н + и 1 ФАДН 2 на дыхательную цепь митохондрий);
  • энергетическая.

Недостаток элементов, необходимых для нормального протекания цикла Кребса, может привести к серьезным проблемам в организме, связанным с нехваткой энергии.

Благодаря метаболической гибкости организм способен использовать в качестве источника энергии не только глюкозу, но и жиры, расщепление которых также дает молекулы, образующие пировиноградную кислоту (задействуется в цикле Кребса). Таким образом, протекающий надлежащим образом ЦТК обеспечивает получение энергии и строительных блоков для образования новых молекул.

Краткие исторические сведения

Наш любимый цикл – ЦТК, или Цикл трикарбоновых кислот – жизнь на Земле и под Землей и в Земле… Стоп, а вообще это самый удивительный механизм – он универсален, является путем окисления продуктов распада углеводов, жиров, белков в клетках живых организмов, в результате получаем энергию для деятельности нашего тела.

Открыл этот процесс собственно Кребс Ганс, за что и получил Нобелевскую премию!

Родился он в августе 25 - 1900 года в Германии город Хильдесхайм. Получил медицинское образование Гамбургского университета, продолжил биохимические исследования под руководством Отто Вaрбурга в Берлине.

В 1930 открыл вместе со студентом своим процесс обезвреживания аммиака в организме, который был у многих представителей живого мира, в том числе и человека. Этот цикл – цикл образования мочевины, который также известен под именем цикла Кребса №1.

Когда к власти пришел Гитлер, Ганс эмигрировал в Великобританию, где продолжает заниматься наукой в Кембриджском и Шеффилдском университетах. Развивая исследования биохимика из Венгрии Альберта Сент-Дьёрди, получает озарение и делает самый знаменитый цикл Кребса № 2, или по-другому "цикл Сент-Дьёрди – Кребса" - 1937.

Результаты исследований посылаются в журнал "Nature", который отказывает в напечатании статьи. Тогда текст перелетает в журнал "Enzymologia" в Голландии. Кребс получает Нобелевскую премию в 1953 по физиологии и медицине.

Открытие было удивительным: в 1935 Сент-Дьёрди находит, что янтарная, оксалоуксусная, фумаровая и яблочная кислоты (все 4 кислоты - естественные химические компоненты клеток животных) усиливают процесс окисления в грудной мышце голубя. Которая была измельчена.

Именно в ней процессы метаболические идут с наибольшей скоростью.

Ф. Кнооп и К.Мартиус в 1937 году находят, что лимонная кислота превращается в изолимонную через продукт промежуточный, цис – аконитовую кислоту. Кроме того изолимонная кислота могла превращаться в а-кетоглутаровую, а та – в янтарную.

Кребс заметил действие кислот на поглощение О2 грудной мышцей голубя и выявил из активирующее действие на окисление ПВК и образование Ацетил-Коэнзима А. Кроме того процессы в мышце угнетались малоновой кислотой, которая похожа на янтарную и могла конкурентно ингибировать ферменты, у которых субстрат – янтарная кислота.

Когда Кребс добавлял малоновую кислоту к среде реакции, то начиналось накопление а-кетоглутаровой, лимонной и янтарной кислот. Таким образом понятно, что действие совместное а-кетоглутаровой, лимонной кислот приводит к образованию янтарной.

Ганс исследовал еще более 20 веществ, но они не влияли на окисление. Сопоставив полученные данные, Кребс получил цикл. В самом начале исследователь не мог точно сказать начинается процесс с лимонно или изолимонной кислоты, поэтому назвал "цикл трикарбоновых кислот".

Сейчас мы знаем, что первой является лимонная кислота, поэтому правильно - цитратный цикл или цикл лимонной кислоты.

У эукариот реакции ЦТК протекают в митохондриях, при этом все ферменты для катализа, кроме 1, содержатся в свободном состоянии в матриксе митохондрии, исключение - сукцинатдегидрогеназа - локализуется на внутренней мембране митохондрии, встраивается в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.

Познакомимся с участниками цикла:

1) Ацетил-Коэнзим А:
- ацетильная группа - Acetyl group
- коэнзим А - Coenzyme A:

2) ЩУК – Оксалоацетат - Щавелево-Уксусная кислота:
как бы состоит из двух частей: щавелевая и уксусная кислота.

3-4) Лимонная и Изолимонная кислоты:

5) а-Кетоглутаровая кислота:

6) Сукцинил-Коэнзим А:

7) Янтарная кислота:

8) Фумаровая кислота:

9) Яблочная кислота:

Как же происходят реакции? В целом мы все привыкли к виду кольца, что и представлено снизу на картинке. Еще ниже все расписано по этапам:

1. Конденсация Ацетил-Коэнзима А и Щавелево-Уксусной кислоты ➙ лимонная кислота.

Превращение Ацетил-Коэнзима А берут начало с конденсации со Щавелево-Уксусной кислотой, в результате образуется лимонная кислота.

Реакция не требует расхода АТФ, так как энергия для этого процесса обеспечивается в результате гидролиза тиоэфирной связи с Ацетил-Коэнзимом А, которая является макроэргической:

2. Лимонная кислота через цис-аконитовую переходит в изолимонную.

Происходит изомеризация лимонной кислоты в изолимонную. Фермент превращения - аконитаза - дегидратирует вначале лимонную кислоту с образованием цис-аконитовой кислоты, потом соединяет воду к двойной связи метаболита, образуя изолимонную кислоту:

3. Изолимонная дегидрируется с образованием а-кетоглутаровой и СО2.

Изолимонная кислота окисляется специфической дегидрогеназой, кофермент которой - НАД.

Одновременно с окислением идет декарбоксилирование изолимонной кислоты. В результате превращений образуется α-кетоглутаровая кислота.

4. Альфа-кетоглутаровая кислота дегидрируется ➙ сукцинил-коэнзим А и СО2.

Следующая стадия - окислительное декарбоксилирование α-кетоглутаровой кислоты.

Катализируется α-кетоглутаратдегидрогеназным комплексом, который аналогичен по механизму, структуре и действию пируватдегидрогеназному комплексу. В результате образуется сукцинил-КоА.

5. Сукцинил-коэнзим А ➙ янтарная кислота.

Сукцинил-КоА гидролизуется до свободной янтарной кислоты, выделяющаяся энергия сохраняется путем образования гуанозинтрифосфата. Эта стадия - единственная в цикле, прикоторой прямо выделится энергия.

6. Янтарная кислота дегидрируется ➙ фумаровая.

Дегидрирование янтарной кислоты ускоряется сукцинатдегидрогеназой, коферментом ее является ФАД.

7. Фумаровая гидратируется ➙ яблочная.

Фумаровая кислота, которая образуется при дегидрировании янтарной кислоты, гидратируется и образуется яблочная.

8. Яблочная кислота дегидрируется ➙ Щавелево-Уксусная - цикл замыкается.

Заключительный процесс - дегидрирование яблочной кислоты, катализируемое малатдегидрогеназой;

Результат стадии - метаболит, с которого начинается цикл трикарбоновых кислот - Щавелево-Уксусная кислота.

В 1 реакцию следующего цикла вступит другая м-ла Ацетил-Коэнзима А.

Как запомнить этот цикл? Просто!

1) Очень образное выражение:
Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует- цитрат, цис-аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.

2) Другое длинное стихотворение:

ЩУКа съела ацетат, получается цитрaт,
Через цисaконитaт будет он изоцитрaт.
Вoдoрoды отдaв НАД, oн теряет СО2,
Этoму безмернo рaд aльфa-кетоглутaрaт.
Окисление грядет - НАД похитил вoдoрoд,
ТДФ, коэнзим А забирают СО2.
А энергия едва в сукциниле пoявилась,
Сразу АТФ рoдилась и oстался сукцинат.
Вот дoбрался он дo ФАДа - вoдoрoды тому надo,
Фумарат воды напился, и в малат oн превратился.
Тут к малату НАД пришел, вoдoрoды приобрел,
ЩУКа снoва oбъявилась и тихoнькo затаилась.

3) Оригинальное стихотворение – покороче:

ЩУКу АЦЕТИЛ ЛИМOНил,
Нo нарЦИСсA КOНь боялся,
Oн над ним ИЗOЛИМOННо
AЛЬФA - КЕТOГЛУТAРался.
CУКЦИНИЛся КOЭНЗИМом,
ЯНТAРился ФУМАРOВo,
ЯБЛОЧек припаc на зиму,
Обернулcя ЩУКой снова.

Цикл трикарбоновых кислот впервые был открыт английским биохимиком Кребсом. Он первым постулировал значение данного цикла для полного сгорания пирувата, главным источником которого является гликолитическое превращение углеводов. В дальнейшем было показано, что цикл трикарбоновых кислот является "фокусом", в котором сходятся практически все метаболические пути.

Итак, образовавшийся в результате окислительного декарбоксилирования пирувата ацетил-КоА вступает в цикл Кребса. Данный цикл состоит из восьми последовательных реакций (рис. 91). Начинается цикл с конденсации ацетил-КоА с оксалоацетатом и образования лимонной кислоты. (Как будет видно ниже, в цикле окислению подвергается собственно не ацетил-КоА, а более сложное соединение - лимонная кислота (трикарбоновая кислота). )

Затем лимонная кислота (шестиуглеродное соединение) путем ряда дегидрирований (отнятие водорода) и дскарбоксилирований (отщепление СО 2) теряет два углеродных атома и снова в цикле Кребса появляется оксалоацетат (четырехуглеродное соединение), т. е. в результате полного оборота цикла молекула ацетил-КоА сгорает до СО 2 и Н 2 О, а молекула оксалоацетата регенерируется. Ниже приводятся все восемь последовательных реакций (этапов) цикла Кребса.

В первой реакции, катализируемой ферментом цитратсинтазой, ацетил-КоА конденсируется с оксалоацетатом. В результате образуется лимонная кислота:

По-видимому, в данной реакции в качестве промежуточного продукта образуется связанный с ферментом цитрил-КоА. Затем последний самопроизвольно и необратимо гидролизуется с образованием цитрата и HS-KoA.

Во второй реакции цикла образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис-аконитовой кислоты, которая, присоединяя молекулу воды, переходит в изолимонную кислоту. Катализирует эти обратимые реакции гидратации-дегидратации фермент аконитат-гидратаза:

В третьей реакции, которая, по-видимому, лимитирует скорость цикла Кребса, изолимонная кислота дегидрируется в присутствии НАД-зависимой изоцитратдегидрогеназы:


(В тканях существует два типа изоцитратдегидрогеназ: НАД- и НАДФ-зависимые. Установлено, что роль основного катализатора окисления изолимонной кислоты в цикле Кребса выполняет НАД-зависимая изоцитратдегидрогеназа. )

В ходе изоцитратдегидрогеназной реакции изолимонная кислота декарбоксилируется. НАД-зависимая изоцитратдегидрогеназа является аллостерическим ферментом, которому в качестве специфического активатора необходим АДФ. Кроме того, фермент для проявления своей активности нуждается в ионах Mg 2+ или Мn 2+ .

В четвертой реакции происходит окислительное декарбоксилирование α-кетоглутаровой кислоты до сукцинил-КоА. Механизм этой реакции сходен с реакцией окислительного декарбоксилирования пирувата до ацетил-КоА. α-Кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в ходе реакции принимают участие пять коферментов: TДФ, амид липоевой кислоты, HS-KoA, ФАД и НАД. Суммарно данную реакцию можно написать так:

Пятая реакция катализируется ферментом сукцинил-КоА-синтетазой. В ходе этой реакции сукцинил-КоА при участии ГДФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ1 за счет высокоэргической тиоэфирной связи сукцинил-КоА:


(Образовавшийся ГТФ отдает затем свою концевую фосфатную группу на АДФ, вследствие чего образуется АТФ. Образование высокоэргического нуклеозидтрифосфата в ходе сукцинил-КоА-синтетазной реакции - пример фосфорилирования на уровне субстрата. )

В шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком ковалентно связан кофермент ФАД:

В седьмой реакции образовавшаяся фумаровая кислота гидратируется под влиянием фермента фумаратгидратазы. Продуктом данной реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью, - в ходе данной реакции образуется L-яблочная кислота:

Наконец, в восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат:

Как видно, за один оборот цикла, состоящего из восьми ферментативных реакций, происходит полное окисление ("сгорание") одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА, а коферменты (НАД и ФАД), перешедшие в восстановленное состояние, должны снова и снова окисляться. Это окисление осуществляется в системе переносчиков электронов (или в цепи дыхательных ферментов), локализованной в митохондриях.

Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ. Из четырех пар атомов водорода три пары переносятся через НАД на систему транспорта электронов; при этом в расчете на каждую пару в системе биологического окисления образуются три молекулы АТФ (в процессе сопряженного окислительного фосфорилирования), а всего, следовательно, девять молекул АТФ. Одна пара атомов попадает в систему транспорта электронов через ФАД, - в результате образуются 2 молекулы АТФ. В ходе реакций цикла Кребса синтезируется также 1 молекула ГТФ, что равносильно 1 молекуле АТФ. Итак, при окислении ацетил-КоА в цикле Кребса образуется 12 молекул АТФ.

Как уже отмечалось, 1 молекула НАДН 2 (3 молекулы АТФ) образуется при окислительном декарбоксилирова-нии пирувата в ацетил-КоА. Так как при расщеплении одной молекулы глюкозы образуются две молекулы пирувата, то при окислении их до 2 молекул ацетил-КоА и последующих двух оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление одной молекулы пирувата до СО 2 и Н 2 O дает 15 молекул АТФ).

К этому надо добавить 2 молекулы АТФ, образующиеся при аэробном гликолизе, и 4 молекулы АТФ, синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН 2 , которые образуются при окислении 2 молекул глицеральдегид-3-фосфата в дегидрогеназной реакции. Итого получим, что при расщеплении в тканях 1 молекулы глюкозы по уравнению: C 6 H 12 0 6 + 60 2 -> 6СO 2 + 6Н 2 O синтезируется 36 молекул АТФ, что способствует накоплению в макроэргических фосфатных связях аденозинтрифосфата 36 X 34,5 ~ 1240 кДж (или, по другим данным, 36 Х 38 ~ 1430 кДж) свободной энергии. Другими словами, из всей освобождающейся при аэробном окислении глюкозы свободной энергии (окодо 2840 кДж) до 50% ее аккумулируется в митохондриях в форме, которая может быть использована для выполнения различных физиологических функций. Несомненно, что в энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем гликолиз. Необходимо отметить, что образовавшиеся в процессе превращения глицеральдегид-3-фосфата 2 молекулы НАДН 2 в дальнейшем при окислении дают не 6 молекул АТФ, а только 4. Дело в том, что сами молекулы внемитохондриального НАДН 2 не способны проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицерофосфатного челночного механизма (рис. 92). Как видно на рисунке, цитоплазматический НАДН 2 сначала реагирует с цитоплазматическим дигидроксиацетонфосфатом, образуя глицерол-3-фосфат. Реакция катализируется НАД-зависимой цитоплазматической глицерол-3-фосфат-дегидрогеназой.

Этот метаболический путь назван именем открывшего его автора - Г. Кребса, получившего (совместно с Ф. Липманом) за данное открытие в 1953 г. Нобелевскую премию. В цикле лимонной кислоты улавливается большая часть свободной энергии , образующейся при распаде белков, жиров и углеводов пищи. Цикл Кребса - центральный путь обмена веществ.

Образовавшийся в результате окислительного декарбоксилирования пирувата ацетил-КоА в матриксе митохондрий включается в цепь последовательных реакций окисления. Таких реакций восемь.

1-я реакция - образование лимонной кислоты . Образование цитрата происходит путем конденсации ацетильного остатка ацетил-КоА с оксалацетатом (ОА) при помощи фермента цитратсинтазы (с участием воды):

Данная реакция практически необратима, поскольку при этом распадается богатая энергией тиоэфирная связь ацетил~S-КоА.

2-я реакция - образование изолимонной кислоты. Эта реакция катализируется железосодержащим (Fe - негеминовое) ферментом - аконитазой. Реакция протекает через стадию образования цис -аконитовой кислоты (лимонная кислота подвергается дегидратации с образованием цис -аконитовой кислоты, которая, присоединяя молекулу воды, превращается в изолимонную).

3-я реакция - дегидрирование и прямое декарбоксилирование изолимонной кислоты. Реакция катализируется НАД + -зависимым ферментом изоцитратдегидрогеназой. Фермент нуждается в присутствии ионов марганца (или магния). Являясь по своей природе аллостерическим белком, изоцитратдегидрогеназа нуждается в специфическом активаторе - АДФ.

4-я реакция - окислительное декарбоксилирование α-кетоглутаровой кислоты. Процесс катализируется α-кетоглутаратдегидрогеназой - ферментным комплексом, по структуре и механизму действия похожим на пируватдегидрогеназный комплекс. В его состав входят те же коферменты: ТПФ, ЛК и ФАД - собственные коферменты комплекса; КоА-SH и НАД + - внешние коферменты.

5-я реакция - субстратное фосфорилирование. Суть реакции заключается в переносе богатой энергией связи сукцинил-КоА (макроэргическое соединение) на ГДФ с участием фосфорной кислоты - при этом образуется ГТФ, молекула которого вступает в реакцию перефосфорилирования с АДФ - образуется АТФ.

6-я реакция - дегидрирование янтарной кислоты сукцинатдегидрогеназой. Фермент осуществляет прямой перенос водорода с субстрата (сукцината) на убихинон внутренней мембраны митохондрий. Сукцинатдегидрогеназа - II комплекс дыхательной цепи митохондрий. Коферментом в этой реакции является ФАД.

7-я реакция - образование яблочной кислоты ферментом фумаразой. Фумараза (фумаратгидратаза) гидратирует фумаровую кислоту - при этом образуется яблочная кислота, причем ее L -форма, так как фермент обладает стереоспецифичностью.


8-я реакция - образование оксалацетата. Реакция катализируется малатдегидрогеназой , коферментом которой служит НАД + . Образовавшийся под действием фермента оксалацетат вновь включается в цикл Кребса и весь циклический процесс повторяется.

Последние три реакции обратимы, но поскольку НАДН?Н + захватывается дыхательной цепью, равновесие реакции сдвигается вправо, т.е. в сторону образования оксалацетата . Как видно, за один оборот цикла происходит полное окисление, “сгорание”, молекулы ацетил-КоА. В ходе цикла образуются восстановленные формы никотинамидных и флавиновых коферментов, которые окисляются в дыхательной цепи митохондрий. Таким образом, цикл Кребса находится в тесной взаимосвязи с процессом клеточного дыхания.

Функции цикла трикарбоновых кислот многообразны:

· Интегративная - цикл Кребса является центральным метаболическим путем, объединяющим процессы распада и синтеза важнейших компонентов клетки.

· Анаболическая - субстраты цикла используются для синтеза многих других соединений: оксалацетат используется для синтеза глюкозы (глюконеогенез) и синтеза аспарагиновой кислоты, ацетил-КоА - для синтеза гема, α-кетоглутарат - для синтеза глютаминовой кислоты, ацетил-КоА - для синтеза жирных кислот, холестерола, стероидных гормонов, ацетоновых тел и др.

· Катаболическая - в этом цикле завершают свой путь продукты распада глюкозы, жирных кислот, кетогенных аминокислот - все они превращаются в ацетил-КоА; глутаминовая кислота - в α-кетоглутаровую; аспарагиновая - в оксалоацетат и пр.

· Собственно энергетическая - одна из реакций цикла (распад сукцинил-КоА) является реакцией субстратного фосфорилирования. В ходе этой реакции образуется одна молекула ГТФ (реакция перефосфорилирования приводит к образованию АТФ).

· Водороддонорная - при участии трех НАД + -зависимых дегидрогеназ (дегидрогеназ изоцитрата, α-кетоглутарата и малата) и ФАД-зависимой сукцинатдегидрогеназы образуются 3 НАДН?Н + и 1 ФАДН 2 . Эти восстановленные коферменты являются донорами водорода для дыхательной цепи митохондрий, энергия переноса водородов используется для синтеза АТФ.

· Анаплеротическая - восполняющая. Значительные количества субстратов цикла Кребса используются для синтеза разных соединений и покидают цикл. Одной из реакций, восполняющих эти потери, является реакция, катализируемая пируваткарбоксилазой.

Скорость реакция цикла Кребса определяется энергетическими потребностями клетки

Скорость реакций цикла Кребса коррелирует с интенсивностью процесса тканевого дыхания и связанного с ним окислительного фосфорилирования - дыхательный контроль. Все метаболиты, отражающие достаточное обеспечение клетки энергией являются ингибиторами цикла Кребса. Увеличение соотношения АТФ/АДФ - показатель достаточного энергообеспечении клетки и снижает активность цикла. Увеличение соотношения НАД + / НАДН, ФАД/ ФАДН 2 указывает на энергодефицит и является сигналом ускорения процессов окисления в цикле Кребса.

Основное действие регуляторов направлено на активность трех ключевых ферментов: цитратсинтазы, изоцитратдегидрогеназы и a-кетоглутаратдегидрогеназы. Аллостерическими ингибиторами цитратсинтазы являются АТФ, жирные кислоты. В некоторых клетках роль ее ингибиторов играют цитрат и НАДН. Изоцитратдегидрогеназа аллостерически активируется АДФ и ингибируется при повышении уровня НАДН+Н + .

Рис. 5.15. Цикл трикарбоновых кислот (цикл Кребса)

Последний является ингибитором и a-кетоглутаратдегидрогена зы, активность которой снижается также при повышении уровня сукцинил-КоА.

Активность цикла Кребса во многом зависит от обеспеченности субстратами. Постоянная “утечка” субстратов из цикла (например, при аммиачном отравлении) может вызывать значительные нарушения энергообеспеченности клеток.

Пентозофосфатный путь окисления глюкозы обслуживает восстановительные синтезы в клетке.

Как видно из названия, в этом пути образуются столь необходимые клетке пентозофосфаты . Поскольку образование пентоз сопровождается окислением и отщеплением первого углеродного атома глюкозы, то этот путь называется также апотомическим (apex - вершина).

Пентозофосфатный путь можно разделить две части: окислительную и неокислительную. В окислительной части, включающей три реакции, образуются НАДФН?Н + и рибулозо-5-фосфат. В неокислительной части рибулозо-5-фосфат превращается в различные моносахариды с 3, 4, 5, 6, 7 и 8 атомами углерода; конечными продуктами являются фруктозо-6-фосфат и 3-ФГА.

· Окислительная часть . Первая реакция -дегидрирование глюкозо-6-фосфата глюкозо-6-фосфатдегидрогеназойс образованием δ-лактона 6-фосфоглюконовой кислоты и НАДФН?Н + (НАДФ + - кофермент глюкозо-6-фосфатдегидрогеназы).

Вторая реакция - гидролиз 6-фосфоглюконолактона глюконолактонгидролазой. Продукт реакции - 6-фосфоглюконат.

Третья реакция - дегидрирование и декарбоксилирование 6-фосфоглюконолактона ферментом 6-фосфоглюконатдегидрогеназой, коферментом которого является НАДФ + . В ходе реакции восстанавливается кофермент и отщепляется С-1 глюкозы с образованием рибулозо-5-фосфата.


· Неокислительная часть . В отличие от первой, окислительной, все реакции этой части пентозофосфатного пути обратимы (рис5.16)

Рис.5.16.Окислительная часть пентозофосфатного пути (F-вариант)

Рибулозо-5-фосфат может изомеризоваться (фермент - кетоизомераза ) в рибозу-5-фосфат и эпимеризоваться (фермент - эпимераза ) в ксилулозо-5-фосфат. Далее следуют два типа реакций: транскетолазная и трансальдолазная.

Транскетолаза (кофермент - тиаминпирофосфат) отщепляет двухуглеродный фрагмент и переносит его на другие сахара (см. схему). Трансальдолаза переносит трехуглеродные фрагменты.

В реакцию вначале вступают рибозо-5-фосфат и ксилулозо-5-фосфат. Это - транскетолазная реакция: переносится 2С-фрагмент от ксилулозо-5-фосфата на рибозо-5-фосфат.

Затем два образовавшиеся соединения реагируют друг с другом в трансальдолазной реакции; при этом в результате переноса 3С-фрагмента от седогептулозо-7-фосфата на 3-ФГА образуются эритрозо-4-фосфат и фруктозо-6-фосфат.Это F-вариант пентозофосфатного пути. Он характерен для жировой ткани.

Однако реакции могут идти и по другому пути(рис.5.17).Этот путь обозначается как L-вариант. Он протекает в печени и других органах. В этом случае в трансальдолазной реакции образуется октулозо-1,8-дифосфат.

Рис.5.17. Пентозофосфатный (апотомический) путь обмена глюкозы (октулозный, или L-вариант)

Эритрозо-4-фосфат и фруктозо-6-фосфат могут вступать в транскетолазную реакцию, в результате которой образуются фруктозо-6-фосфат и 3-ФГА.

Общее уравнение окислительной и неокислительной частей пентозофосфатного пути можно представить в следующем виде:

Глюкозо-6-Ф + 7Н 2 О + 12НАДФ + 5 Пентозо-5-Ф + 6СО 2 + 12 НАДФН?Н + + Фн.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «school-mon.ru» — Школьный понедельник - Образовательный портал