Теория вероятностей на егэ по математике. Теория вероятности формулы и примеры решения задач

Нравится нам это или нет, но наша жизнь полна всевозможных случайностей, как приятных так и не очень. Поэтому каждому из нас не помешало бы знать, как найти вероятность того или иного события. Это поможет принимать верные решения при любых обстоятельствах, которые связаны с неопределенностью. К примеру, такие знания окажутся весьма кстати при выборе вариантов инвестирования, оценке возможности выигрыша в акции или лотерее, определении реальности достижения личных целей и т. д., и т. п.

Формула теории вероятности

В принципе, изучение данной темы не занимает слишком много времени. Для того чтобы получить ответ на вопрос: "Как найти вероятность какого-либо явления?", нужно разобраться с ключевыми понятиями и запомнить основные принципы, на которых базируется расчёт. Итак, согласно статистике, исследуемые события обозначаются через A1, А2,..., An. У каждого из них есть как благоприятствующие исходы (m), так и общее количество элементарных исходов. К примеру, нас интересует, как найти вероятность того, что на верхней грани кубика окажется четное число очков. Тогда А - это бросок m - выпадение 2, 4 или 6 очков (три благоприятствующих варианта), а n - это все шесть возможных вариантов.

Сама же формула расчета выглядит следующим образом:

С одним исходом все предельно легко. А вот как найти вероятность, если события идут одно за другим? Рассмотрим такой пример: из карточной колоды (36 шт.) показывается одна карта, затем она прячется снова в колоду, и после перемешивания вытаскивается следующая. Как найти вероятность того, что хоть в одном случае была вытащена дама пик? Существует следующее правило: если рассматривается сложное событие, которое можно разделить на несколько несовместимых простых событий, то можно сначала рассчитать результат для каждого из них, а затем сложить их между собой. В нашем случае это будет выглядеть так: 1 / 36 + 1 / 36 = 1 / 18 . А как же быть тогда, когда несколько происходят одновременно? Тогда результаты умножаем! Например, вероятность того, что при одновременном подбрасывании сразу двух монет выпадут две решки, будет равна: ½ * ½ = 0.25.

Теперь возьмем еще более сложный пример. Предположим, мы попали на книжную лотерею, в которой из тридцати билетов десять являются выигрышными. Требуется определить:

  1. Вероятность того, что оба окажутся выигрышными.
  2. Хотя бы один из них принесет приз.
  3. Оба окажутся проигрышными.

Итак, рассмотрим первый случай. Его можно разбить на два события: первый билет будет счастливым, и второй также окажется счастливым. Учтем, что события зависимы, поскольку после каждого вытаскивания общее количество вариантов уменьшается. Получаем:

10 / 30 * 9 / 29 = 0,1034.

Во втором случае понадобится определить вероятность проигрышного билета и учесть, что он может быть как первым по счету, так и вторым: 10 / 30 * 20 / 29 + 20 / 29 * 10 / 30 = 0,4598.

Наконец, третий случай, когда по разыгранной лотерее даже одной книжки получить не получится: 20 / 30 * 19 / 29 = 0,4368.

Формула полной вероятности позволяет найти вероятность события A , которое может наступить только с каждым из n исключающих друг друга событий , образующих полную систему, если известны их вероятности , а условные вероятности события A относительно каждого из событий системы равны .

События также называются гипотезами, они являются исключающими друг друга. Поэтому в литературе можно также встретить их обозначение не буквой B , а буквой H (hypothesis).

Для решения задач с такими условиями необходимо рассмотреть 3, 4, 5 или в общем случае n возможностей наступления события A - с каждым событий .

По теоремам сложения и умножения вероятностей получаем сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы. То есть, вероятность события A может быть вычислена по формуле

или в общем виде

,

которая и называется формулой полной вероятности .

Формула полной вероятности: примеры решения задач

Пример 1. Имеются три одинаковых на вид урны: в первой 2 белых шара и 3 чёрных, во второй - 4 белых и один чёрный, в третьей - три белых шара. Некто подходит наугад к одной из урн и вынимает из неё один шар. Пользуясь формулой полной вероятности , найти вероятность того, что этот шар будет белым.

Решение. Событие A - появление белого шара. Выдвигаем три гипотезы:

Выбрана первая урна;

Выбрана вторая урна;

Выбрана третья урна.

Условные вероятности события A относительно каждой из гипотез:

, , .

Применяем формулу полной вероятности, в результате - требуемая вероятность:

.

Пример 2. На первом заводе из каждых 100 лампочек производится в среднем 90 стандартных, на втором - 95, на третьем - 85, а продукция этих заводов составляет соответственно 50%, 30% и 20% всех электролампочек, поставляемых в магазины некоторого района. Найти вероятность приобретения стандартной электролампочки.

Решение. Обозначим вероятность приобретения стандартной электролампочки через A , а события, заключающиеся в том, что приобретённая лампочка изготовлена соответственно на первом, втором и третьем заводах, через . По условию известны вероятности этих событий: , , и условные вероятности события A относительно каждого из них: , , . Это вероятности приобретения стандартной лампочки при условии её изготовления соответственно на первом, втором, третьем заводах.

Событие A наступит, если произойдут или событие K - лампочка изготовлена на первом заводе и стандартна, или событие L - лампочка изготовлена на втором заводе и стандартна, или событие M - лампочка изготовлена на третьем заводе и стандартна. Других возможностей наступления события A нет. Следовательно, событие A является суммой событий K , L и M , которые являются несовместимыми. Применяя теорему сложения вероятностей, представим вероятность события A в виде

а по теореме умножения вероятностей получим

то есть, частный случай формулы полной вероятности .

Подставив в левую часть формулы значения вероятностей, получаем вероятность события A :

Пример 3. Производится посадка самолёта на аэродром. Если позволяет погода, лётчик сажает самолёт, пользуясь, помимо приборов, ещё и визуальным наблюдением. В этом случае вероятность благополучной посадки равна . Если аэродром затянут низкой облачностью, то лётчик сажает самолёт, ориентируясь только по приборам. В этом случае вероятность благополучной посадки равна ; . Приборы, обеспечивающие слепую посадку, имеют надёжность (вероятность безотказной работы) P . При наличии низкой облачности и отказавших приборах слепой посадки вероятность благополучной посадки равна ; . Статистика показывает, что в k % случаев посадки аэродром затянут низкой облачностью. Найти полную вероятность события A - благополучной посадки самолёта.

Решение. Гипотезы:

Низкой облачности нет;

Низкая облачность есть.

Вероятности этих гипотез (событий):

;

Условная вероятность .

Условную вероятность снова найдём по формуле полной вероятности с гипотезами

Приборы слепой посадки действуют;

Приборы слепой посадки отказали.

Вероятности этих гипотез:

По формуле полной вероятности

Пример 4. Прибор может работать в двух режимах: нормальном и ненормальном. Нормальный режим наблюдается в 80% всех случаев работы прибора, а ненормальный - в 20% случаев. Вероятность выхода прибора из строя за определённое время t равна 0,1; в ненормальном 0,7. Найти полную вероятность выхода прибора из строя за время t .

Решение. Вновь обозначаем вероятность выхода прибора из строя через A . Итак, относительно работы прибора в каждом режиме (события ) по условию известны вероятности: для нормального режима это 80% (), для ненормального - 20% (). Вероятность события A (то есть, выхода прибора из строя) в зависимости от первого события (нормального режима) равна 0,1 (); в зависимости от второго события (ненормального режима) - 0,7 (). Подставляем эти значения в формулу полной вероятности (то есть, сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы) и перед нами - требуемый результат.

Наш ответ

Выбор правильной ставки зависит не только от интуиции, спортивных знаний, букмекерских коэффициентов, но и от коэффициента вероятности события. Возможность рассчитать подобный показатель в беттинге является залогом успеха в прогнозировании предстоящего события, на который предполагается осуществление ставки.
В букмекерских конторах существует три вида коэффициентов (подробней в статье ), от разновидности которых зависит, как рассчитать вероятность события игроку.

Десятичные коэффициенты

Расчет вероятности события в таком случае происходит по формуле: 1/коэф.соб. = в.и, где коэф.соб. – коэффициент события, а в.и – вероятность исхода. Например, берем коэффициент события 1,80 при ставке в один доллар, совершая математическое действие по формуле, игрок получает, что вероятность исхода события по версии букмекера 0,55 процента.

Дробные коэффициенты

При использовании дробных коэффициентов формула расчета вероятности будет другая. Так при коэффициенте 7/2, где первая цифра означает возможный размер чистой прибыли, а вторая размер необходимой ставки, для получения этой прибыли, уравнение будет выглядеть следующим образом: зн.коэф/ на сумму зн.коэф и чс.коэф = в.и. Здесь зн.коэф – знаменатель коэффициента, чс.коэф – числитель коэффициента, в.и – вероятность исхода. Таким образом, для дробного коэффициента 7/2 уравнение выглядит как 2 / (7+2) = 2 / 9 = 0.22, следовательно, 0,22 процента вероятность исхода события по версии букмекерской конторы.

Американские коэффициенты

Американские коэффициенты мало популярны у игроков и, как правило, используются исключительно в США, обладая сложной и запутанной структурой. Для ответа на вопрос: «Как посчитать вероятность события таким способом?», нужно знать, что подобные коэффициенты могут быть отрицательными и положительными.

Коэффициент со знаком «-», например -150, показывает, что игроку для получения чистой прибыли в 100 долларов необходимо совершить ставку в 150 долларов. Вероятность события рассчитывается исходя из формулы, где нужно разделить отрицательный коэффициент на сумму отрицательного коэффициента и 100. Выглядит это на примере ставки -150, так (-(-150)) / ((-(-150)) + 100) = 150 / (150 + 100) = 150 / 250 = 0.6, где 0,6 умножается на 100 и исход вероятности события составляет 60 процентов. Эта же формула подходит и для положительных американских коэффициентов.

Понимаю, что всем хочется заранее знать, как завершится спортивное мероприятие, кто одержит победу, а кто проиграет. Обладая подобной информацией, можно без страха делать ставки на спортивные мероприятия. Но можно ли вообще и если да, то как рассчитать вероятность события?

Вероятность – это величина относительная, поэтому не может с точностью говорить о каком-либо событии. Данная величина позволяет проанализировать и оценить необходимость совершения ставки на то или иное соревнование. Определение вероятностей – это целая наука, требующая тщательного изучения и понимания.

Коэффициент вероятности в теории вероятности

В ставках на спорт есть несколько вариантов исхода соревнования:

  • победа первой команды;
  • победа второй команды;
  • ничья;
  • тотал.

У каждого исхода соревнования есть своя вероятность и частота, с которой данное событие совершится при условии сохранения начальных характеристик. Как уже говорили ранее, невозможно точно рассчитать вероятность какого-либо события – оно может совпасть, а может и не совпасть. Таким образом, ваша ставка может как выиграть, так и проиграть.

Точного 100% предугадывания результатов соревнования не может быть, так как на исход матча влияет множество факторов. Естественно, и букмекеры не знают заранее исход матча и лишь предполагают результат, принимая решение на своей системе анализа и предлагают определенные коэффициенты для ставок.

Как посчитать вероятность события?

Допустим, что коэффициент букмекера равен 2. 1/2 – получаем 50%. Получается, что коэффициент 2 равен вероятности 50%. По тому же принципу можно получить безубыточный коэффициент вероятности – 1/вероятность.

Многие игроки думают, что после нескольких повторяющихся поражений, обязательно произойдет выигрыш — это ошибочное мнение. Вероятность выигрыша ставки не зависит от количества поражений. Даже если вы выбрасываете несколько орлов подряд в игре с монеткой, вероятность выбрасывания решки останется прежней – 50%.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «school-mon.ru» — Школьный понедельник - Образовательный портал