Комплексные ионы Соли. Комплексные соединения. Определение, классификация Oh соединение

Как известно, металлы имеют свойство терять электроны и, тем самым, образовывать . Положительно заряженные ионы металлов могут находиться в окружении анионов или нейтральных молекул, образуя частицы, называемые комплексными и способные к самостоятельному существованию в кристалле или растворе. А соединения, содержащие в узлах своих кристаллов комплексные частицы, называются комплексными соединениями .

Структура комплексных соединений

  1. Большинство комплексных соединений имеют внутреннюю и внешнюю сферы . Записывая химические формулы комплексных соединений, внутреннюю сферу заключают в квадратные скобки. Например, в комплексных соединениях К и Cl 2 , внутренней сферой являются группы атомов (комплексы) — — и 2+ , а внешней сферой — ионы К + и Сl – соответственно.
  2. Центральный атом или ион внутренней сферы называют комплексообразователем . Обычно, в качестве комплексообразователей выступают или ионы металлов с достаточным количеством свободных – это p-, d-, f- элементы: Cu 2+ , Pt 2+ , Pt 4+ , Ag + , Zn 2+ , Al 3+ и др. Но это может быть и атомы элементов, образующих неметаллы. Заряд комплексообразователя обычно положительный, но также может быть отрицательным или равным нулю и равен сумме зарядов всех остальных ионов. В приведенных выше примерах комплексообразователями являются ионы Al 3+ и Ca 2+ .
  1. Комплексообразователь окружен и связан с ионами противоположного знака или нейтральными молекулами, так называемыми лигандами . В качестве лигандов в комплексных соединениях могут выступать такие анионы, как F – , OH – , CN – , CNS – , NO 2 – , CO 3 2– , C 2 O 4 2– и др., или нейтральные молекулы Н 2 О, NН 3 , СО, NО и др. В наших примерах это – ионы OH — и молекулы NH 3 . Количество лигандов в различных комплексных соединениях лежит в пределах от 2 до 12. А само число лигандов (число сигма-связей) называется координационным числом (к.ч.) комплексообразователя. В рассматриваемых примерах к.ч. равно 4 и 8.
  1. Заряд комплекса (внутренней сферы) определяется как сумма зарядов комплексообразователя и лигандов.
  2. Внешнюю сферу образуют ионы, связанные с комплексом ионной или межмолекулярной связью и имеющие заряд, знак которого противоположен знаку заряда комплексообразователя. Числовое значение заряда внешней сферы совпадает с числовым значением заряда внутренней сферы. В формуле комплексного соединения записываются они за квадратными скобками. Внешняя сфера может и вовсе отсутствовать, в случае, если внутренняя сфера нейтральна. В приведенных примерах, внешнюю сферу образуют 1 ион K + и 2 иона Cl — соответственно.

Классификация комплексных соединений

Основываясь на различных принципах, комплексные соединения можно классифицировать различными способами:

  1. По электрическому заряду: катионные, анионные и нейтральные комплексы.
  • Катионные комплексы имеют положительный заряд и образуются если вокруг положительного иона координированы нейтральные молекулы. Например, Cl 3 , Cl 2
  • Анионные комплекс ы имеют отрицательный заряд и образуются, если вокруг положительного иона координированы атомы с отрицательной . Например, К, K 2
  • Нейтральные комплексы имеют заряд равный нулю и не имеют внешней сферы. Они могут образоваться при координации вокруг атома молекул, а также при одновременной координации вокруг центрального положительно заряженного иона отрицательных ионов и молекул.
  1. По количеству комплексообразователей
  • Одноядерные – комплекс содержит один центральный атом, например, K 2
  • Многоядерны е — комплекс содержит два и более центральных атомов, например,
  1. По типу лиганда
  • Гидраты – содержат акво-комплексы, т.е. в качестве лигандов выступают молекулы воды. Например, Br 3 , Br 2
  • Аммиакаты – содержат аммин-комплексы, в которых в качестве лигандов выступают молекулы аммиака (NН 3­). Например, Cl 2 , Cl
  • Карбонилы – в таких комплексных соединениях, в качестве лигандов выступают молекулы монооксида углерода. Например, , .
  • Ацидокомплексы – комплексные соединения, содержащие в качестве лигандов кислотные остатки как кислородсодержащих, так и бескислородных кислот (F – , Cl – , Br – , I – , CN – , NO 2 – , SO 4 2– , PO 4 3– и др., а также ОН –). Например, K 4 , Na 2
  • Гидроксокомплексы - комплексные соединения, в которых в качестве лигандов выступают гидроксид-ионы: K 2 , Cs 2

Комплексные соединения могут содержать лиганды, относящиеся к различным классам приведенной классификации. Например: К, Br

  1. По химическим свойствам: кислоты, основания, соли, неэлектролиты:
  • Кислоты — H, H 2
  • Основания — (OH) 2 ,OH
  • Соли Cs 3 , Cl 2
  • Неэлектролиты
  1. По количеству мест, занимаемых лигандом в координационной сфере

В координационной сфере лиганды могут занимать одно или несколько мест, т.е. образовывать с центральным атомом одну или несколько связей. По этому признаку различают:

  • Монодентатные лиганды – это такие лиганды как молекулы Н 2 О, NH 3 , CO, NO и др. и ноны CN − , F − , Cl − , OH − , SCN − , и др.
  • Бидентатные лиганды . К такому типу лигандов относятся ионы H 2 N-CH 2 -COO − , СО 3 2− , SO 4 2− , S 2 O 3 2− , молекула этилендиамина H 2 N-CH 2 -CH 2 -H 2 N (сокращенно en ).
  • Полидентатные лиганды . Это, например, органические лиганды, содержащие несколько групп — CN или -COOH (ЭДТА). Некоторые полидентантные лиганды способны образовать циклические комплексы, называемые хелатными (например, гемоглобин, хлорофилл и др.)

Номенклатура комплексных соединений

Чтобы записать формулу комплексного соединения, необходимо помнить, что, как и любое ионное соединение, вначале записывается формула катиона, а после – формула аниона. При этом, формулу комплекса записывают в квадратных скобках , где вначале записывают комплексообразователь, затем лиганды.

А вот несколько правил, следуя которым составить название комплексного соединения не составит никакого труда:

  1. В названиях комплексных соединений, как и ионных солей, первым указывают анион, а затем – катион.
  2. В названии комплекса сначала указывают лиганды, а после – комплексообразователь . Лиганды перечисляют в алфавитном порядке.
  3. Нейтральные лиганды называются также, как молекулы , к анионным лигандам прибавляют окончание –о. В таблице ниже даны названия наиболее распространенных лигандов
Лиганд Название лиганда Лиганд Название лиганда
en этилендиамин O 2- Оксо
H 2 O Аква H — Гидридо
NH 3 Аммин H + Гидро
CO Карбонил OH — Гидроксо
NO Нитрозил SO 4 2- Сульфато
NO — Нитрозо CO 3 2- Карбонато
NO 2 — Нитро CN — Циано
N 3 — Азидо NCS — Тиоционато
Cl — Хлоро C 2 O 4 2- Оксалато
Br — Бромо
  1. Если количество лигандов больше единицы, то их число указывают греческими приставками:

2-ди-, 3-три-, 4-тетра-, 5-пента-, 6-гекса-, 7-гепта-, 8-окта-, 9-нона-, 10-дека-.

Если же в названии самого лиганда уже присутствует греческая приставка, то название лиганда записывают в скобках и к нему прибавляют приставку типа:

2-бис-, 3-трис-, 4-тетракис-, 5-пентакис-, 6-гексакис-.

Например, соединение Cl 3 называют – трис(этилендиамин)кобальт(III).

  1. Названия комплексных анионов оканчиваются суффиксом – ат
  2. После названия металла в скобках указывают римскими цифрами его степень окисления.

Например, назовем следующие соединения:

  • Cl

Начнем с лигандов : 4 молекулы воды обозначаются как тетрааква, а 2 хлорид-иона – как дихлоро.

Наконец, анионом в данном соединении является хлорид-ион.

хлорид тетрааквадихлорохрома(III )

  • K 4

Начнем с лигандов: в комплексном анионе содержится 4 лиганда CN — , которые называются тетрациано.

Так как металл входит в состав комплексного аниона, то он называется никелат(0).

Итак, полное название таково – тетрацианоникелат(0) калия

Категории ,

Общая химия: учебник / А. В. Жолнин; под ред. В. А. Попкова, А. В. Жолнина. - 2012. - 400 с.: ил.

Глава 7. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

Глава 7. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

Комплексообразующие элементы являются организаторами жизни.

К. Б. Яцимирский

Комплексные соединения - наиболее обширный и разнообразный класс соединений. В живых организмах присутствуют комплексные соединения биогенных металлов с белками, аминокислотами, порфи-ринами, нуклеиновыми кислотами, углеводами, макроциклическими соединениями. Важнейшие процессы жизнедеятельности протекают с участием комплексных соединений. Некоторые из них (гемоглобин, хлорофилл, гемоцианин, витамин В 12 и др.) играют значительную роль в биохимических процессах. Многие лекарственные препараты содержат комплексы металлов. Например, инсулин (комплекс цинка), витамин В 12 (комплекс кобальта), платинол (комплекс платины) и т.д.

7.1. КООРДИНАЦИОННАЯ ТЕОРИЯ А. ВЕРНЕРА

Строение комплексных соединений

При взаимодействии частиц наблюдается взаимная координация частиц, которую можно определить как процесс комплексообразова-ния. Например, процесс гидратации ионов заканчивается образованием аквакомплексов. Реакции комплексообразования сопровождаются переносом электронных пар и приводят к образованию или разрушению соединений высшего порядка, так называемых комплексных (координационных) соединений. Особенностью комплексных соединений является наличие в них координационной связи, возникшей по донорно-акцепторному механизму:

Комплексными соединениями называются соединения, существующие как в кристаллическом состоянии, так и в растворе, особенностью

которых является наличие центрального атома, окруженного лигандами. Комплексные соединения можно рассматривать как сложные соединения высшего порядка, состоящие из простых молекул, способных к самостоятельному существованию в растворе.

По координационной теории Вернера в комплексном соединении различают внутреннюю и внешнюю сферы. Центральный атом с окружающими его лигандами образуют внутреннюю сферу комплекса. Ее обычно заключают в квадратные скобки. Все остальное в комплексном соединении составляет внешнюю сферу и пишется за квадратными скобками. Вокруг центрального атома размешается определенное число лигандов, которое определяется координационным числом (кч). Число координированных лигандов чаще всего равно 6 или 4. Лиганд занимает около центрального атома координационное место. При координации изменяются свойства как лигандов, так и центрального атома. Часто координированные лиганды невозможно обнаружить с помощью химических реакций, характерных для них в свободном состоянии. Более прочно связанные частицы внутренней сферы называются комплексом (комплексным ионом). Между центральным атомом и лигандами действуют силы притяжения (образуется ковалентная связь по обменному и (или) донорно-акцепторному механизму), между лигандами - силы отталкивания. Если заряд внутренней сферы равен 0, то внешняя координационная сфера отсутствует.

Центральный атом (комплексообразователь) - атом или ион, который занимает центральное положение в комплексном соединении. Роль комплексообразователя чаще всего выполняют частицы, имеющие свободные орбитали и достаточно большой положительный заряд ядра, а следовательно, могут быть акцепторами электронов. Это катионы переходных элементов. Наиболее сильные комплексообразовате-ли - элементы IB и VIIIB групп. Редко в качестве комплексообразо-

вателей выступают нейтральные атомы d-элементов и атомы неметаллов в различной степени окисления - . Число свободных атомных орбиталей, предоставляемых комплексообразователем, определяет его координационное число. Величина координационного числа зависит от многих факторов, но обычно она равна удвоенному заряду иона-комплексообразователя:

Лиганды - ионы или молекулы, которые непосредственно связаны с комплексообразователем и являются донорами электронных пар. Эти электроноизбыточные системы, имеющие свободные и подвижные электронные пары, могут быть донорами электронов, например:

Соединения р-элементов проявляют комплексообразующие свойства и выступают в комплексном соединении в качестве лигандов. Лигандами могут быть атомы и молекулы (белка, аминокислот, нуклеиновых кислот, углеводов). По числу связей, образуемых лигандами с комплексо-образователем, лиганды делятся на моно-, ди- и полидентатные лиганды. Вышеперечисленные лиганды (молекулы и анионы) являются моноден-татными, так как они доноры одной электронной пары. К бидентатным лигандам относятся молекулы или ионы, содержащие две функциональные группы, способные быть донором двух электронных пар:

К полидентатным лигандам можно отнести 6-дентатный лиганд этилендиаминтетрауксусной кислоты:

Число мест, занимаемых каждым лигандом во внутренней сфере комплексного соединения, называется координационной емкостью (дентатностью) лиганда. Она определяется числом электронных пар лиганда, которые участвуют в образовании координационной связи с центральным атомом.

Кроме комплексных соединений, координационная химия охватывает двойные соли, кристаллогидраты, распадающиеся в водном растворе на составные части, которые в твердом состоянии во многих случаях построены аналогично комплексным, но неустойчивы.

Наиболее устойчивые и разнообразные комплексы по составу и выполняемым ими функциям образуют d-элементы. Особенно большое значение имеют комплексные соединения переходных элементов: железа, марганца, титана, кобальта, меди, цинка и молибдена. Биогенные s -элементы (Na, К, Mg, Са) образуют комплексные соединения только с лигандами определенной циклической структуры, выступая также в качестве комплексообразователя. Основная часть р -элементов (N, P, S, О) является активной действующей частью комплексообразующих частиц (лигандов), в том числе и биолигандов. В этом состоит их биологическая значимость.

Следовательно, способность к комплексообразованию - это общее свойство химических элементов периодической системы, эта способность уменьшается в следующем порядке: f > d > p > s.

7.2. ОПРЕДЕЛЕНИЕ ЗАРЯДА ОСНОВНЫХ ЧАСТИЦ КОМПЛЕКСНОГО СОЕДИНЕНИЯ

Заряд внутренней сферы комплексного соединения представляет собой алгебраическую сумму зарядов образующих ее частиц. Например, величина и знак заряда комплекса определяются следующим образом. Заряд иона алюминия равен +3, суммарный заряд шести гидроксид-ионов -6. Следовательно, заряд комплекса равен (+3) + (-6) = -3 и формула комплекса 3- . Заряд комплексного иона численно равен суммарному заряду внешней сферы и противоположен ему по знаку. Например, заряд внешней сферы K 3 равен +3. Следовательно, заряд комплексного иона равен -3. Заряд комплексообразователя равен по величине и противоположен по знаку алгебраической сумме зарядов всех остальных частиц комплексного соединения. Отсюда, в K 3 заряд иона железа равен +3, так как суммарный заряд всех остальных частиц комплексного соединения равен (+3) + (-6) = -3.

7.3. НОМЕНКЛАТУРА КОМПЛЕКСНЫХ СОЕДИНЕНИЙ

Основы номенклатуры разработаны в классических трудах Вернера. В соответствии с ними в комплексном соединении вначале называют катион, а затем анион. Если соединение неэлектролитного типа, то его называют одним словом. Название комплексного иона пишется в одно слово.

Нейтральный лиганд называют так же, как и молекулу, а к лигандам-анионам добавляют в конце «о». Для координированной молекулы воды используют обозначение «аква-». Для обозначения числа одинаковых лигандов во внутренней сфере комплекса в качестве приставки перед названием лигандов используют греческие числительные ди-, три-, тетра-, пента-, гекса- и т.д. Приставку мононе употребляют. Лиганды перечисляют в алфавитном порядке. Название лиганда рассматривают как единое целое. После названия лиганда следует наименование центрального атома с указанием степени окисления, которую обозначают римскими цифрами в круглых скобках. Слово аммин (с двумя «м») пишется применительно к аммиаку. Для всех других аминов употребляется только одно «м».

C1 3 - гексамминкобальта (III) хлорид.

C1 3 - аквапентамминкобальта (III) хлорид.

Cl 2 - пентаметиламминхлорокобальта (III) хлорид.

Диамминдибромоплатина (II).

Если комплексный ион является анионом, то его латинское название имеет окончание «am».

(NH 4) 2 - аммоний тетрахлоропалладат (II).

K - калий пентабромоамминплатинат (IV).

K 2 - калий тетрароданокобальтат (II).

Название сложного лиганда обычно заключают в круглые скобки.

NO 3 - дихлоро-ди-(этилендиамин) кобальта (III) нитрат.

Br - бромо-трис-(трифенилфосфин) платины (II) бромид.

В тех случаях, когда лиганд связывает два центральных иона, перед его названием употребляется греческая буква μ.

Такие лиганды называют мостиковыми и перечисляют последними.

7.4. ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ

В образовании комплексных соединений важную роль играют донорно-акцепторные взаимодействия лиганда и центрального атома. Донором электронной пары, как правило, является лиганд. Акцептором - центральный атом, который имеет свободные орбитали. Связь эта прочна и не разрывается при растворении комплекса (неио-ногенна), и ее называют координационной.

Наряду с о-связями образуются π-связи по донорно-акцепторному механизму. При этом донором служит ион металла, отдающий свои спаренные d-электроны лиганду, имеющему энергетически выгодные вакантные орбитали. Такие связи называют дативными. Они образуются:

а)за счет перекрывания вакантных р-орбиталей металла с d-ор-биталью металла, на которой находятся электроны, не вступившие в σ-связь;

б)при перекрывании вакантных d-орбиталей лиганда с заполненными d-орбиталями металла.

Мерой ее прочности является степень перекрывания орбиталей лиган-да и центрального атома. Направленность связей центрального атома определяет геометрию комплекса. Для объяснения направленности связей используются представления о гибридизации атомных орбиталей центрального атома. Гибридные орбитали центрального атома являются результатом смешения неравноценных атомных орбиталей, в результате форма и энергия орбиталей взаимно изменяются, и образуются орби-тали новой одинаковой формы и энергии. Число гибридных орбиталей всегда равно числу исходных. Гибридные облака располагаются в атоме на максимальном удалении друг от друга (табл. 7.1).

Таблица 7.1. Типы гибридизации атомных орбиталей комплексообразовате-ля и геометрия некоторых комплексных соединений

Пространственная структура комплекса определяется типом гибридизации валентных орбиталей и числом неподеленных электронных пар, содержащихся в его валентном энергетическом уровне.

Эффективность донорно-акцепторного взаимодействия лиганда и комплексообразователя, а следовательно, и прочность связи между ними (устойчивость комплекса) определяются их поляризуемостью, т.е. способностью трансформировать свои электронные оболочки под внешним воздействием. По этому признаку реагенты подразделяются на «жесткие», или малополяризуемые, и «мягкие» - легкополя-ризуемые. Полярность атома, молекулы или иона зависит от их размера и числа электронных слоев. Чем меньше радиус и электронов у частицы, тем она меньше поляризуется. Чем меньше радиус и меньше электронов у частицы, тем она хуже поляризуется.

Жесткие кислоты образуют с электроотрицательными атомами О, N, F лигандов (жестких оснований) прочные (жесткие) комплексы, а мягкие кислоты образуют с донорными атомами Р, S и I лигандов, имеющих низкую электроотрицательность и высокую поляризуемость, прочные (мягкие) комплексы. Мы наблюдаем здесь проявление общего принципа «подобное с подобным».

Ионы натрия, калия вследствие своей жесткости практически не образуют устойчивых комплексов с биосубстратами и в физиологических средах находятся в виде аквакомплексов. Ионы Са 2 + и Mg 2 + образуют достаточно устойчивые комплексы с белками и поэтому в физиологических средах находятся как в ионном, так и в связанном состоянии.

Ионы d-элементов образуют с биосубстратами (белками) прочные комплексы. А мягкие кислоты Cd, Pb, Hg сильно токсичны. Они образуют прочные комплексы с белками, содержащими R-SH сульф-гидрильные группы:

Цианид-ион токсичен. Мягкий лиганд активно взаимодействует с d-металлами в комплексах с биосубстратами, активируя последние.

7.5. ДИССОЦИАЦИЯ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ. УСТОЙЧИВОСТЬ КОМПЛЕКСОВ. ЛАБИЛЬНЫЕ И ИНЕРТНЫЕ КОМПЛЕКСЫ

При растворении в воде комплексных соединений обычно они распадаются на ионы внешней и внутренней сфер, подобно сильным электролитам, так как эти ионы связаны ионогенно, в основном электростатическими силами. Это оценивается как первичная диссоциация комплексных соединений.

Вторичная диссоциация комплексного соединения - это распад внутренней сферы на составляющие ее компоненты. Этот процесс протекает по типу слабых электролитов, так как частицы внутренней сферы связаны неионогенно (ковалентной связью). Диссоциация носит ступенчатый характер:

Для качественной характеристики устойчивости внутренней сферы комплексного соединения используют константу равновесия, описывающую полную ее диссоциацию, называемую константой нестойкости комплекса (Кн). Для комплексного аниона - выражение константы нестойкости имеет вид:

Чем меньше значение Кн, тем более устойчивой является внутренняя сфера комплексного соединения, т.е. тем меньше она диссоциирует в водном растворе. В последнее время вместо Кн используют значение константы устойчивости (Ку) - величины, обратной Кн. Чем больше значение Ку, тем более стабильный комплекс.

Константы устойчивости позволяют прогнозировать направление лигандообменных процессов.

В водном растворе ион металла существует в виде аквакомплексов: 2 + - гексаакважелезо (II), 2 + - тетрааквамедь (II). При написании формул гидратированных ионов координированные молекулы воды гидратной оболочки не указываем, но подразумеваем. Образование комплекса между ионом металла и каким-либо лигандом рассматриваем как реакцию замещения молекулы воды во внутренней координационной сфере этим лигандом.

Лигандообменные реакции протекают по механизму реакций S N -Типа. Например:

Значения констант устойчивости, приведенные в таблице 7.2, свидетельствуют о том, что за счет процесса комплексообразования происходит прочное связывание ионов в водных растворах, что указывает на эффективность использования данного типа реакций для связывания ионов, особенно полидентатными лигандами.

Таблица 7.2. Устойчивость комплексов циркония

В отличие от реакций ионного обмена образование комплексных соединений часто не является квазимгновенным процессом. Например, при взаимодействии железа (III) с нитрилтриметиленфосфоновой кислотой равновесие устанавливается через 4 суток. Для кинетической характеристики комплексов используются понятия - лабильный (быстро вступающий в реакцию) и инертный (медленно вступающий в реакцию). Лабильными комплексами, по предложению Г. Таубе, считаются такие, которые полностью обмениваются лигандами в течение 1 мин при комнатной температуре и концентрации раствора 0,1 М. Необходимо четко различать термодинамические понятия [прочный (устойчивый)/непрочный (неустойчивый)] и кинетические [инертный и лабильный] комплексы.

У лабильных комплексов замещение лигандов происходит быстро и быстро устанавливается равновесие. У инертных комплексов замещение лигандов протекает медленно.

Так, инертный комплекс 2 + в кислой среде термодинамически неустойчив: константа нестойкости равна 10 -6 , а лабильный комплекс 2- очень устойчив: константа устойчивости равна 10 -30 . Лабильность комплексов Таубе связывает с электронной структурой центрального атома. Инертность комплексов свойственна, главным образом, ионам с незаконченной d-оболочкой. К инертным относятся комплексы Со, Сr. Цианидные комплексы многих катионов с внешним уровнем s 2 p 6 лабильны.

7.6. ХИМИЧЕСКИЕ СВОЙСТВА КОМПЛЕКСОВ

Процессы комплексообразования сказываются практически на свойствах всех частиц, образующих комплекс. Чем выше прочность связей лиганда и комплексообразователя, тем в меньшей степени в растворе проявляются свойства центрального атома и лигандов и тем заметнее сказываются особенности комплекса.

Комплексные соединения проявляют химическую и биологическую активность в результате координационной ненасыщенности центрального атома (имеются свободные орбитали) и наличия свободных электронных пар лигандов. В этом случае комплекс обладает электро-фильными и нуклеофильными свойствами, отличными от свойств центрального атома и лигандов.

Необходимо учитывать влияние на химическую и биологическую активность строения гидратной оболочки комплекса. Процесс образова-

ния комплексов оказывает влияние на кислотно-основные свойства комплексного соединения. Образование комплексных кислот сопровождается увеличением силы кислоты или основания соответственно. Так, при образовании комплексных кислот из простых энергия связи с ионами Н + падает и сила кислоты соответственно растет. Если во внешней сфере находится ион ОН - , то связь между комплексным катионом и гидроксид-ионом внешней сферы уменьшается, и основные свойства комплекса увеличиваются. Например, гидроксид меди Cu(ОН) 2 - слабое, труднорастворимое основание. При действии на него аммиака образуется аммиакат меди (OH) 2 . Плотность заряда 2 + по сравнению с Cu 2 + уменьшается, связь с ионами ОН - ослабляется и (OH) 2 ведет себя как сильное основание. Кислотно-основные свойства лигандов, связанных с комплексообразователем, обычно проявляются более сильно, чем кислотно-основные свойства их в свободном состоянии. Например, гемоглобин (Нb) или оксигемоглобин (НbО 2) проявляют кислотные свойства за счет свободных карбоксильных групп белка-глобина, являющегося лигандом ННb ↔ Н + + Hb - . В то же время анион гемоглобина за счет аминогрупп белка глобина проявляет основные свойства и поэтому связывает кислотный оксид СО 2 с образованием аниона карбаминогемоглобина (НbСО 2 -): СО 2 + Hb - ↔ НbСО 2 - .

Комплексы проявляют окислительно-восстановительные свойства за счет окислительно-восстановительных превращений комплексо-образователя, образующего устойчивые степени окисления. Процесс комплексообразования сильно влияет на величины восстановительных потенциалов d-элементов. Если восстановленная форма катионов образует с данным лигандом более устойчивый комплекс, чем его окисленная форма, то величина потенциала возрастает. Снижение величины потенциала происходит, когда более устойчивый комплекс образует окисленная форма. Например, под действием окислителей: нитритов, нитратов, NO 2 , H 2 O 2 гемоглобин в результате окисления центрального атома превращается в метгемоглобин.

Шестая орбиталь используется в образовании оксигемоглобина. Эта же орбиталь участвует в образовании связи с монооксидом углерода. В результате образуется макроциклический комплекс с железом - карбоксигемоглобин. Этот комплекс в 200 раз более устойчив, чем комплекс железа с кислородом в геме.

Рис. 7.1. Химические превращения гемоглобина в организме человека. Схема из кн.: Слесарев В.И. Основы химии живого, 2000

Образование комплексных ионов влияет на каталитическую активность ионов комплексообразователей. В ряде случаев активность увеличивается. Это обусловлено образованием в растворе крупных структурных систем, способных участвовать в создании промежуточных продуктов и снижении энергии активации реакции. Например, если к Н 2 О 2 прибавить Cu 2+ или NH 3 , процесс разложения не ускоряется. В присутствии же комплекса 2 +, который образуется в щелочной среде, разложение перекиси водорода ускоряется в 40 млн раз.

Итак, на гемоглобине можно рассмотреть свойства комплексных соединений: кислотно-основные, комплексообразования и окислительно-восстановительные.

7.7. КЛАССИФИКАЦИЯ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ

Существует несколько систем классификации комплексных соединений, которые основываются на различных принципах.

1.По принадлежности комплексного соединения к определенному классу соединений:

Комплексные кислоты H 2 ;

Комплексные основания OH;

Комплексные соли K 4 .

2.По природе лиганда: аквакомплексы, аммиакаты, ацидоком-плексы (в качестве лигандов выступают анионы различных кислот, K 4 ; гидроксокомплексы (в качестве лигандов - гидроксиль-ные группы, K 3 ); комплексы с макроциклическими лиганда-ми, внутри которых размещается центральный атом.

3.По знаку заряда комплекса: катионные - комплексный катион в комплексном соединении Cl 3 ; анионные - комплексный анион в комплексном соединении K; нейтральные - заряд комплекса равен 0. Комплексное соединение внешней сферы не имеет, например . Это формула противоопухолевого препарата.

4.По внутренней структуре комплекса:

а) в зависимости от числа атомов комплексообразователя: моноядерные - в состав комплексной частицы входит один атом комплексообразователя, например Cl 3 ; многоядерные - в составе комплексной частицы несколько атомов ком-плексообразователя - железопротеиновый комплекс:

б) в зависимости от числа видов лигандов различают комплексы: однородные (однолигандные), содержащие один вид лиганда, например 2 +, и разнородные (разнолигандные) - два вида лигандов или более, например Pt(NH 3) 2 Cl 2 . В состав комплекса входят лиган-ды NH 3 и Cl - . Для комплексных соединений, содержащих во внутренней сфере различные лиганды, характерна геометрическая изомерия, когда при одинаковом составе внутренней сферы лиганды в ней располагаются по-разному относительно друг друга.

Геометрические изомеры комплексных соединений отличаются не только по физическим и химическим свойствам, но и биологической активностью. Цис-изомер Pt(NH 3) 2 Cl 2 имеет ярко выраженную противоопухолевую активность, а транс-изомер - нет;

в)в зависимости от дентатности лигандов, образующих моноядерные комплексы, можно выделить группы:

Одноядерные комплексы с монодентатными лигандами, например 3+ ;

Одноядерные комплексы с полидентатными лигандами. Комплексные соединения с полидентатными лигандами называют хелатными соединениями;

г)циклические и ациклические формы комплексных соединений.

7.8. ХЕЛАТНЫЕ КОМПЛЕКСЫ. КОМПЛЕКСОНЫ. КОМПЛЕКСОНАТЫ

Циклические структуры, которые образуются в результате присоединения иона металла к двум донорным атомам или более, принадлежащим одной молекуле хелатообразующего агента, называются хелатными соединениями. Например, глицинат меди:

В них комплексообразователь как бы ведет внутрь лиганда, охвачен связями, как клешнями, поэтому они при прочих равных условиях обладают более высокой устойчивостью, чем соединения, не содержащие циклов. Наиболее устойчивы циклы, состоящие из пяти или шести звеньев. Это правило впервые сформулировано Л.А. Чугаевым. Разность

устойчивости хелатного комплекса и устойчивости его нециклического аналога называют хелатньм эффектом.

В качестве хелатообразующего агента выступают полидентатные лиганды, которые содержат 2 типа группировок:

1)группы, способные к образованию ковалентных полярных связей за счет реакций обмена (доноры протонов, акцепторы электронных пар) -СН 2 СООН, -СН 2 РО(ОН) 2 , -CH 2 SO 2 OH, - кислотные группы (центры);

2)группы-доноры электронных пар: ≡N, >NH, >C=O, -S-, -OH, - основные группы (центры).

Если такие лиганды насыщают внутреннюю координационную сферу комплекса и полностью нейтрализуют заряд иона металла, то соединения называют внутрикомплексньми. Например, глицинат меди. В данном комплексе внешняя сфера отсутствует.

Большая группа органических веществ, содержащих в молекуле основные и кислотные центры, называется комплексонами. Это многоосновные кислоты. Хелатные соединения, образуемые комплексонами при взаимодействии с ионами металлов, называют комплексонатами, например комплексонат магния с этилендиаминтетрауксусной кислотой:

В водном растворе комплекс существует в анионной форме.

Комплексоны и комплексонаты являются простой моделью более сложных соединений живых организмов: аминокислот, полипептидов, белков, нуклеиновых кислот, ферментов, витаминов и многих других эндогенных соединений.

В настоящее время выпускается огромный ассортимент синтетических комплексонов с различными функциональными группами. Формулы основных комплексонов представлены ниже:


Комплексоны при определенных условиях могут предоставлять неподеленные электронные пары (несколько) для образования координационной связи с ионом металла (s-, p- или d-элемента). В результате образуются устойчивые соединения хелатного типа с 4-, 5-, 6- или 8-членными циклами. Реакция протекает в широком интервале pH. В зависимости от pH, природы комплексообразователя, соотношения его с лигандом образуются комплексонаты различной прочности и растворимости. Химизм образования комплексонатов можно представить уравнениями на примере натриевой соли ЭДТА (Na 2 H 2 Y), который в водном растворе диссоциирует: Na 2 H 2 Y→ 2Na + + H 2 Y 2- , и ион H 2 Y 2- взаимодействует с ионами металлов независимо от степени окисления катиона металла, с одной молекулой комплексона взаимодействует чаще всего один ион металла (1:1). Реакция протекает количественно (Кр >10 9).

Комплексоны и комплексонаты проявляют в широком интервале pH амфотерные свойства, способность участвовать в реакциях окисления- восстановления, комплексообразования, образуют соединения с разнообразными свойствами в зависимости от степени окисления металла, его координационной насыщенности, обладают электрофильными и нуклеофильными свойствами. Все это определяет способность связывать огромное число частиц, что позволяет малым количеством реагента решать большие и разнообразные задачи.

Другое неоспоримое достоинство комплексонов и комплексонатов - это малая токсичность и способность превращать токсичные частицы

в малотоксичные или даже в биологически активные. Продукты разрушения комплексонатов не накапливаются в организме и безвредны. Третья особенность комплексонатов - это возможность их использования как источника микроэлементов.

Повышенная усвояемость обусловлена тем, что микроэлемент вводится в биологически активной форме и обладает высокой мембрано-проницаемостью.

7.9. ФОСФОРСОДЕРЖАЩИЕ КОМПЛЕКСОНАТЫ МЕТАЛЛОВ - ЭФФЕКТИВНАЯ ФОРМА ПРЕВРАЩЕНИЯ МИКРО-И МАКРОЭЛЕМЕНТОВ В БИОЛОГИЧЕСКИ АКТИВНОЕ СОСТОЯНИЕ И МОДЕЛЬ ИССЛЕДОВАНИЯ БИОЛОГИЧЕСКОГО ДЕЙСТВИЯ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

Понятие биологическая активность охватывает широкий круг явлений. С точки зрения химического воздействия под биологически активными веществами (БАВ) принято понимать вещества, которые могут действовать на биологические системы, регулируя их жизнедеятельность.

Способность к такому воздействию трактуют как способность к проявлению биологической активности. Регуляция может проявляться в эффектах стимулирования, угнетения, развития тех или иных эффектов. Крайним проявлением биологической активности является биоцидное действие, когда в результате воздействия вещества-биоцида на организм последний погибает. При меньших концентрациях в большинстве случаев биоциды оказывают на живые организмы не летальное, а стимулирующее действие.

В настоящее время известно большое число таких веществ. Тем не менее во многих случаях применение известных БАВ используют недостаточно, нередко с эффективностью, далекой от максимальной, и применение нередко приводит к побочным эффектам, которые могут быть устранены путем введения в БАВ модификаторов.

Фосфорсодержащие комплексонаты образуют соединения с разнообразными свойствами в зависимости от природы, степени окисления металла, координационной насыщенности, состава и строения гидрат-ной оболочки. Все это определяет полифункциональность комплексо-натов, их уникальную способность субстехиометрического действия,

эффект общего иона и обеспечивает широкое применение в медицине, биологии, экологии и в различных отраслях народного хозяйства.

При координации ионом металла комплексона происходит перераспределение электронной плотности. Вследствие участия неподе-ленной электронной пары при донорно-акцепторном взаимодействии происходит смещение электронной плотности лиганда (комплексо-на) к центральному атому. Понижение относительно отрицательного заряда на лиганде способствует уменьшению кулоновского отталкивания реагентов. Поэтому координированный лиганд становится более доступным для атаки нуклеофильным реагентом, имеющим на реакционном центре избыток электронной плотности. Смещение электронной плотности от комплексона к иону металла приводит к относительному увеличению положительного заряда атома углерода, а следовательно, и к облегчению его атаки нуклеофильным реагентом, гидроксильным ионом. Гидроксилированный комплекс среди ферментов, которые катализируют процессы метаболизма в биологических системах, занимает одно из центральных мест в механизме ферментативного действия и детоксикации организма. В результате многоточечного взаимодействия фермента с субстратом происходит ориентация, обеспечивающая сближение активных групп в активном центре и перевод реакции во внутримолекулярный режим, до начала протекания реакции и образования переходного состояния, что обеспечивает ферментативную функцию ФКМ. В молекулах фермента могут происходить конформа-ционные изменения. Координация создает дополнительные условия для окислительно-восстановительного взаимодействия между центральным ионом и лигандом, так как устанавливается непосредственная связь между окислителем и восстановителем, обеспечивающая переход электронов. Для комплексов переходных металлов ФКМ могут быть характерны переходы электронов типа L-M, M-L, M-L-M, в которых участвуют орбитали как металла (M), так и лигандов (L), которые соответственно связаны в комплексе донорно-акцепторными связями. Комплексоны могут служить мостиком по которому осциллируют электроны многоядерных комплексов между центральными атомами одного или разных элементов в различной степени окисления (комплексы переноса электронов и протонов). Комплексоны определяют восстановительные свойства комплексонатов металлов, что позволяет им проявлять высокие антиоксидантные, адаптогенные свойства, гомеостатические функции.

Итак, комплексоны превращают микроэлементы в биологически активную, доступную для организма форму. Они образуют устойчивые,

более координационно насыщенные частицы, неспособные разрушать биокомплексы, а следовательно, малотоксичные формы. Комплексонаты благоприятно действуют при нарушении микроэлементного гомеоста-за организма. Ионы переходных элементов в комплексонатной форме выступают в организме в качестве фактора, определяющего высокую чувствительность клеток, к микроэлементам путем их участия в создании высокого градиента концентрации, мембранного потенциала. Комплексонаты переходных металлов ФКМ обладают биорегуляторны-ми свойствами.

Наличие в составе ФКМ кислотных и основных центров обеспечивает амфотерные свойства и их участие в поддержании кислотно-основного равновесия (состояние изогидрии).

С увеличением числа фосфоновых групп в составе комплексона изменяются состав и условия образования растворимых и малорастворимых комплексов. Увеличение числа фосфоновых групп благоприятствует образованию малорастворимых комплексов в более широком интервале pH, сдвигает область их существования в кислую область. Разложение комплексов происходит при pH более 9.

Изучение процессов комплексообразования с комплексонами позволило разработать методики синтеза биорегуляторов:

Стимуляторы роста пролонгированного действия в коллоидно-химической форме - это полиядерные гомо- и гетерокомплекс-ные соединения титана и железа;

Стимуляторы роста в водорастворимой форме. Это разнолиганд-ные комплексонаты титана на основе комплексонов и неорганического лиганда;

Ингибиторы роста - фосфорсодержащие комплексонаты s-элементов.

Биологическое действие синтезированных препаратов на рост и развитие изучено в хроническом эксперименте на растениях, животных и человеке.

Биорегуляция - это новое научное направление, позволяющее регулировать направление и интенсивность биохимических процессов, что можно широко использовать в медицине, животноводстве и растениеводстве. Оно связано с разработкой способов восстановления физиологической функции организма с целью профилактики и лечения заболеваний и возрастных патологий. Комплексоны и комплексные соединения на их основе можно отнести к перспективным биологически активным соединениям. Изучение их биологического действия в хроническом эксперименте показало, что химия дала в руки медиков,

животноводов, агрономов и биологов новое перспективное средство, позволяющее активно воздействовать на живую клетку, регулировать условия питания, рост и развитие живых организмов.

Исследование токсичности применяемых комплексонов и комплексонатов показало полное отсутствие влияния препаратов на кроветворные органы, артериальное давление, возбудимость, частоту дыхания: не отмечено изменение функции печени, не выявлено токсикологическое влияние на морфологию тканей и органов. Калиевая соль ОЭДФ не обладает токсичностью в дозе, в 5-10 раз превышающей лечебную (10-20 мг/кг) при исследовании в течение 181 сут. Следовательно, комплексоны относятся к малотоксичным соединениям. Они используются в качестве лекарственных препаратов для борьбы с вирусными заболеваниями, отравлениями тяжелыми металлами и радиоактивными элементами, нарушением кальциевого обмена, при эндемических заболеваниях и нарушении баланса микроэлемента в организме. Фосфорсодержащие комплек-соны и комплексонаты не подвергаются фотолизу.

Прогрессирующее загрязнение окружающей среды тяжелыми металлами - продуктами хозяйственной деятельности человека является постоянно действующим экологическим фактором. Они могут накапливаться в организме. Избыток и недостаток их вызывают интоксикацию организма.

Комплексонаты металлов, сохраняют в организме хелатообразующий эффект по лиганду (комплексону) и являются незаменимыми для поддержания металлолигандного гомеостаза. Инкорпорированные тяжелые металлы до определенной степени нейтрализуются в организме, а низкая ресорбционная способность препятствует передаче металлов вдоль трофических цепей, в результате это приводит к определенной «биоминиза-ции» их токсического действия, что особенно актуально для Уральского региона. Например, свободный ион свинца относится к тиоловым ядам, а прочный комплексонат свинца с этилендиаминтетрауксусной кислотой малотоксичен. Поэтому детоксикация растений и животных заключается в применении комплексонатов металлов. Она основана на двух термодинамических принципах: их способности образовывать прочные связи с токсичными частицами, превращая их в малорастворимые либо устойчивые в водном растворе соединения; их неспособности разрушать эндогенные биокомплексы. В связи с этим мы считаем важным направлением борьбы с экоотравлениями и получением экологически чистой продукции - это комплексонотерапию растений и животных.

Проведено изучение влияния обработки растений комплексоната-ми различных металлов при интенсивной технологии выращивания

картофеля на микроэлементный состав клубней картофеля. Образцы клубней содержали 105-116 мг/кг железа, 16-20 мг/кг марганца, 13-18 мг/кг меди и 11-15 мг/кг цинка. Соотношение и содержание микроэлементов типичны для растительных тканей. Клубни, выращенные с применением и без применения комплексонатов металлов, имеют практически одинаковый элементный состав. Применение хела-тов не создает условия для накопления тяжелых металлов в клубнях. Комплексонаты в меньшей степени, чем ионы металлов, сорбируются почвой, устойчивы против ее микробиологического воздействия, что позволяет им длительное время удерживаться в почвенном растворе. Эффект последействия 3-4 года. Они хорошо сочетаются с различными ядохимикатами. Металл в комплексе имеет более низкую токсичность. Фосфорсодержащие комплексонаты металлов не раздражают слизистую оболочку глаз и не повреждают кожу. Сенсибилизирующие свойства не выявлены, кумулятивные свойства комплексонатов титана не выражены, а у некоторых выражены очень слабо. Коэффициент кумуляции равен 0,9-3,0, что указывает на низкую потенциальную опасность хронического отравления препаратами.

В основе фосфорсодержащих комплексов лежит фосфоруглеродная связь (С-Р), которая обнаружена и в биологических системах. Она входит в состав фосфонолипидов, фосфоногликанов и фосфопротеинов клеточных мембран. Липиды, содержащие аминофосфоновые соединения, устойчивы к энзиматическому гидролизу, обеспечивают стабильность, а следовательно, и нормальное функционирование наружных клеточных мембран. Синтетические аналоги пирофосфатов - дифос-фонаты (Р-С-Р) или (Р-С-С-Р) в больших дозах нарушают обмен кальция, а в малых нормализуют его. Дифосфонаты эффективны при гиперлипемии и перспективны с позиций фармакологии.

Дифосфонаты, содержащие связи Р-С-Р, являются структурными элементами биосистем. Они биологически эффективны и являются аналогами пирофосфатов. Показано, что дифосфонаты являются эффективными средствами лечения различных заболеваний. Дифосфонаты являются активными ингибиторами минерализации и резорбции костей. Комплексоны превращают микроэлементы в биологически активную, доступную для организма форму, образуют устойчивые более координационно-насыщенные частицы, неспособные разрушать биокомплексы, а следовательно, малотоксичные формы. Они определяют высокую чувствительность клеток к микроэлементам, участвуя в формировании высокого градиента концентрации. Способны участвовать в образовании многоядерных соединений титана гетероядер-

ного типа - комплексов переноса электронов и протонов, участвовать в биорегуляции обменных процессов, резистентности организма, способности образовывать связи с токсическими частицами, превращая их в малорастворимые или растворимые, устойчивые, неразрушающие эндогенные комплексы. Поэтому их применение для детоксикации, элиминации из организма, получения экологически чистых продуктов (комплексонотерапии), а также в промышленности для регенерации и утилизации промышленных отходов неорганических кислот и солей переходных металлов весьма перспективно.

7.10. ЛИГАНДООБМЕННЫЕ И МЕТАЛЛООБМЕННЫЕ

РАВНОВЕСИЯ. ХЕЛАТОТЕРАПИЯ

Если в системе несколько лигандов с одним ионом металла или несколько ионов металла с одним лигандом, способных к образованию комплексных соединений, то наблюдаются конкурирующие процессы: в первом случае лигандообменное равновесие - конкуренция между лигандами за ион металла, во втором случае металлообменное равновесие - конкуренция между ионами металла за лиганд. Преобладающим будет процесс образования наиболее прочного комплекса. Например, в растворе имеются ионы: магния, цинка, железа (III), меди, хрома (II), железа (II) и марганца (II). При введении в этот раствор небольшого количества этилендиаминтетрауксусной кислоты (ЭДТА) происходят конкуренция между ионами металлов и связывание в комплекс железа (III), так как он образует с ЭДТА наиболее прочный комплекс.

В организме постоянно происходят взаимодействие биометаллов (Мб) и биолигандов (Lб), образование и разрушение жизненно необходимых биокомплексов (МбLб):

В организме человека, животных и растений имеются различные механизмы защиты и поддержки данного равновесия от различных ксенобиотиков (чужеродных веществ), и в том числе от ионов тяжелых металлов. Ионы тяжелых металлов, не связанные в комплекс, и их гидроксокомплексы являются токсичными частицами (Мт). В этих случаях, наряду с естественным металлолигандным равновесием, может возникнуть новое равновесие, с образованием более прочных чужеродных комплексов, содержащих металлы токсиканта (МтLб) или лиганды-токсиканты (МбLт), которые не выполняют

необходимые биологические функции. При попадании в организм экзогенных токсичных частиц возникают совмещенные равновесия и как следствие - конкуренция процессов. Преобладающим будет тот процесс, который приводит к образованию наиболее прочного комплексного соединения:

Нарушения металлолигандного гомеостаза вызывают нарушения процесса обмена веществ, ингибируют активность ферментов, разрушают важные метаболиты, такие, как АТФ, клеточные мембраны, нарушают градиент концентрации ионов в клетках. Поэтому создаются искусственные системы защиты. Должное место в этом методе занимает хелатотерапия (комплексонотерапия).

Хелатотерапия - это выведение токсичных частиц из организма, основанное на хелатировании их комплексонатами s-элементов. Препараты, применяемые для выведения инкорпорированных в организме токсичных частиц, называют детоксикантами (Lg). Хелатирование токсичных частиц комплексонатами металлов (Lg) преобразует токсичные ионы металлов (Мт) в нетоксичные (МтLg) связанные формы, подходящие для изоляции и проникновения через мембраны, транспорта и выведения из организма. Они сохраняют в организме хелатообразующий эффект как по лиганду (комплексону), так и по иону металла. Это обеспечивает металлолигандный гомеостаз организма. Поэтому применение комплексонатов в медицине, животноводстве, растениеводстве обеспечивает детоксикацию организма.

Основные термодинамические принципы хелатотерапии можно сформулировать в двух положениях.

I. Детоксикант (Lg) должен эффективно связывать ионы-токсиканты (Мт, Lт), вновь образующиеся соединения (МтLg) должны быть прочнее, чем те, которые существовали в организме:

II. Детоксикант не должен разрушать жизненно необходимые комплексные соединения (МбLб); соединения, которые могут образовываться при взаимодействии детоксиканта и ионов биометаллов (MбLg), должны быть менее прочными, чем существующие в организме:

7.11. ПРИМЕНЕНИЕ КОМПЛЕКСОНОВ И КОМПЛЕКСОНАТОВ В МЕДИЦИНЕ

Молекулы комплексонов практически не подвергаются расщеплению или какому-либо изменению в биологической среде, что является их важной фармакологической особенностью. Комплексоны нерастворимы в липидах и хорошо растворимы в воде, поэтому они не проникают или плохо проникают через клеточные мембраны, а следовательно: 1) не выводятся кишечником; 2) всасывание ком-плексообразователей происходит только при их инъекции (лишь пеницилламин принимают внутрь); 3) в организме комплексоны циркулируют по преимуществу во внеклеточном пространстве; 4) выведение из организма осуществляется главным образом через почки. Этот процесс происходит быстро.

Вещества, устраняющие последствия воздействия ядов на биологические структуры и инактивирующие яды посредством химических реакций, называют антидотами.

Одним из первых антидотов, который применили в хелатотерапии, является британский антилюизит (БАЛ). В настоящее время применяют унитиол:

Этот препарат эффективно выводит из организма мышьяк, ртуть, хром и висмут. Наиболее широко используют при отравлении цинком, кадмием, свинцом и ртутью комплексоны и комплексонаты. Применение их основано на образовании более прочных комплексов с ионами металлов, чем комплексы этих же ионов с серосодержащими группами белков, аминокислот и углеводов. Для выведения свинца используют препараты на основе ЭДТА. Введение в организм в больших дозах препаратов опасно, так как они связывают ионы кальция, что приводит к нарушению многих функций. Поэтому применяют тетацин (СаNa 2 ЭДТА), который используют для выведения свинца, кадмия, ртути, иттрия, церия и других редкоземельных металлов и кобальта.

Со времени первого лечебного использования тетацина в 1952 году этот препарат нашел широкое применение в клинике профессиональных заболеваний и продолжает оставаться незаменимым антидотом. Механизм действия тетацина весьма интересен. Ионы-токсиканты вытесняют координированный ион кальция из тетацина в связи с образованием более прочных связей с кислородом и ЭДТА. Ион кальция, в свою очередь, вытесняет два оставшихся иона натрия:

Тетацин вводят в организм в виде 5-10% раствора, основой которого является физиологический раствор. Так, уже через 1,5 ч после внутрибрюшинной инъекции в организме остается 15% введенной дозы тетацина, через 6 ч - 3%, а через 2 сут - только 0,5%. Эффективно и быстро действует препарат при применении ингаляционного метода введения тетацина. Он быстро всасывается и долго циркулирует в крови. Кроме того, тетацин используют при защите от газовой гангрены. Он ингибирует действие ионов цинка и кобальта, которые являются активаторами фермента лецитиназы, являющегося токсином газовой гангрены.

Связывание токсикантов тетацином в малотоксичный и более прочный хелатный комплекс, который не разрушается и легко выводится из организма через почки, обеспечивает детоксикацию и сбалансированное минеральное питание. Близким по структуре и составу к пре-

паратам ЭДТА является натриево-кальциевая соль диэтилентриамин-пентауксусной кислоты (СаNa 3 ДТПА) - пентацин и натриевая соль диэтилентриаминпентафосфоновой кислоты (Na 6 ДТПФ) - тримефа-цин. Пентацин применяют преимущественно при отравлениях соединениями железа, кадмия и свинца, а также для удаления радионуклидов (технеция, плутония, урана).

Натриевая соль этилендиаминдиизопропилфосфоновой кислоты (СаNa 2 ЭДТФ) фосфицин успешно используется для выведения из организма ртути, свинца, берилия, марганца, актиноидов и других металлов. Комплексонаты весьма эффективны для удаления некоторых токсичных анионов. Например, этилендиаминтетраацетат кобальта (II), образующий смешанно-лигандный комплекс с CN - , может быть рекомендован в качестве антидота при отравлениях цианидами. Аналогичный принцип лежит в основе способов выведения токсичных органических веществ, в том числе пестицидов, содержащих функциональные группировки с донорными атомами, способными к взаимодействию с металлом комплексоната.

Эффективным препаратом является сукцимер (димеркаптоянтарная кислота, димеркаптосукциновая кислота, хемет). Он прочно связывает практически все токсиканты (Hg, As, Pb, Cd), но выводит из организма ионы биогенных элементов (Cu, Fe, Zn, Co), поэтому почти не применяется.

Фосфоросодержащие комплексонаты являются мощными ингибиторами кристаллообразования фосфатов и оксалатов кальция. В качестве антикальцифицирующего препарата при лечении мочекаменной болезни предложен ксидифон - калиево-натриевая соль ОЭДФ. Дифосфонаты, кроме того, в минимальных дозах увеличивают включение кальция в костную ткань, предупреждают патологический выход его из костей. ОЭДФ и другие дифосфонаты предотвращают различные виды остеопороза, включая почечную остеодистрофию, периоденталь-

ную деструкцию, также деструкцию пересаженной кости у животных. Описан также антиатеросклеротический эффект ОЭДФ.

В США предложен ряд дифосфонатов, в частности ОЭДФ, в качестве фармацевтических препаратов для лечения человека и животных, страдающих метастазированным раком костей. Регулируя проницаемость мембран, дифосфонаты способствуют транспортировке противоопухолевых лекарств в клетку, а значит, и эффективному лечению различных онкологических заболеваний.

Одной из актуальных проблем современной медицины является задача экспрессной диагностики различных заболеваний. В этом аспекте несомненный интерес представляет новый класс препаратов, содержащих катионы, способные выполнять функции зонда - радиоактивных магниторелаксационных и флюоресцентных меток. В качестве основных компонентов радиофармацевтических препаратов используются радиоизотопы некоторых металлов. Хелатирование катионов этих изотопов комплексонами позволяет повысить их токсикологическую приемлемость для организма, облегчить их транспортировку и обеспечить в известных пределах избирательность концентрации в тех или иных органах.

Приведенные примеры отнюдь не исчерпывают всего многообразия форм применения комплексонатов в медицине. Так, дикалиевая соль этилендиаминтетраацетата магния используется для регулирования содержания жидкости в тканях при патологии. ЭДТА применяется в составе антикоагулянтных суспензий, используемых при разделении плазмы крови, в качестве стабилизатора аденозинтрифосфата при определении глюкозы в крови, при осветлении и хранении контактных линз. При лечении ревматоидных заболеваний широко используют дифосфонаты. Они особенно эффективны в качестве противоартрит-ных средств в сочетании с противовоспалительными средствами.

7.12. КОМПЛЕКСЫ С МАКРОЦИКЛИЧЕСКИМИ СОЕДИНЕНИЯМИ

Среди природных комплексных соединений особое место занимают макрокомплексы на основе циклических полипептидов, содержащих внутренние полости определенных размеров, в которых находится несколько кислородсодержащих групп, способных связывать катионы тех металлов, в том числе натрия и калия, размеры которых соответствуют размерам полости. Такие вещества, находясь в биологи-

Рис. 7.2. Комплекс валиномицина с ионом K +

ческих материалах, обеспечивают транспорт ионов через мембраны и поэтому называются ионофорами. Например, валиномицин транспортирует ион калия через мембрану (рис. 7.2).

С помощью другого полипептида - грамицидина А осуществляется транспорт катионов натрия по эстафетному механизму. Этот полипептид свернут в «трубочку», внутренняя поверхность которой выстлана кислородсодержащими группами. В результате получается

достаточно большой длины гидрофильный канал с определенным сечением, соответствующим размеру иона натрия. Ион натрия, входя в гидрофильный канал с одной стороны, передается от одной к другой кислородным группировкам, подобно эстафете по ионопроводящему каналу.

Итак, циклическая молекула полипептида имеет внутримолекулярную полость, в которую может войти субстрат определенного размера, геометрии по принципу ключа и замка. Полость таких внутренних рецепторов окаймлена активными центрами (эндорецепто-рами). В зависимости от природы иона металла может происходить нековалентное взаимодействие (электростатическое, образование водородных связей, ван-дер-ваальсовы силы) со щелочными металлами и ковалентное со щелочноземельными металлами. В результате этого образуются супрамолекулы - сложные ассоциаты, состоящие из двух частиц или более, удерживаемых вместе межмолекулярными силами.

Наиболее распространены в живой природе тетрадентатные макроциклы - порфины и близкие им по структуре корриноиды. Схематически тетрадентный цикл может быть представлен в следующем виде (рис. 7.3), где дуги означают однотипные углеродные цепи, соединяющие донорные атомы азота в замкнутый цикл; R 1 , R 2 , R 3 , Р 4 -углеводородные радикалы; М n+ - ион металла: в хлорофилле ион Mg 2+ , в гемоглобине ион Fe 2+ , в гемоцианине ион Cu 2+ , в витамине В 12 (кобаламин) ион Со 3+ .

Донорные атомы азота расположены по углам квадрата (обозначены пунктиром). Они жестко скоординированы в пространстве. Поэтому

порфирины и корриноиды образуют прочные комплексы с катионами различных элементов и даже щелочноземельных металлов. Существенно, что независимо от дентатности лиганда химическая связь и строение комплекса определяются донор-ными атомами. Так, например, комплексы меди с NH 3 , этилендиамином и пор-фирином имеют одинаковое квадратное строение и сходную электронную конфигурацию. Но полидентатные лиганды связываются с ионами металлов гораздо сильнее, чем монодентатные лиганды

Рис. 7.3. Тетрадентатный макроцикл

с теми же донорными атомами. Прочность этилендиаминовых комплексов на 8-10 порядков больше, чем прочность тех же металлов с аммиаком.

Бионеорганические комплексы ионов металлов с белками называют биокластерами - комплексами ионов металлов с макроциклическими соединениями (рис. 7.4).

Рис. 7.4. Схематическое изображение структуры биокластеров определенных размеров белковых комплексов с ионами d-элементов. Типы взаимодействий белковой молекулы. М n+ - ион металла активного центра

Внутри биокластера имеется полость. В нее входит металл, который взаимодействует с донорными атомами связывающих групп: ОН - , SH - , COO - , -NH 2 , белков, аминокислот. Наиболее известные металлофер-

менты (карбоангидраза, ксантиноксидаза, цитохромы) представляют собой биокластеры, полости которых образуют центры ферментов, содержащие Zn, Mo, Fe соответственно.

7.13. МНОГОЯДЕРНЫЕ КОМПЛЕКСЫ

Гетеровалентные и гетероядерные комплексы

Комплексы, в состав которых входит несколько центральных атомов одного или различных элементов, называют многоядерными. Возможность образования многоядерных комплексов определяется способностью некоторых лигандов связываться с двумя или тремя ионами металлов. Такие лиганды называются мостиковыми. Соответственно мостиковыми называются и комплексы. Принципиально возможны и одноатомные мостики, например:

В них используются неподеленные электронные пары, принадлежащие одному и тому же атому. Роль мостиков могут исполнять многоатомные лиганды. В таких мостиках используются неподелен-ные электронные пары, принадлежащие разным атомам полиатомного лиганда.

А.А. Гринберг и Ф.М. Филинов исследовали мостиковые соединения состава , в которых лиганд связывает комплексные соединения одного и того же металла, но в различных степенях окисления. Г. Таубе назвал их комплексами переноса электрона. Он исследовал реакции переноса электрона между центральными атомами различных металлов. Систематические исследования кинетики и механизма окислительно-восстановительных реакций привели к заключению, что перенос электрона между двумя комплексами про-

исходит через образующийся лигандный мостик. Обмен электроном между 2 + и 2 + происходит через образование промежуточного мостикового комплекса (рис. 7.5). Перенос электрона происходит через хлоридный мостиковый лиганд, заканчиваясь образованием комплексов 2 +; 2 +.

Рис. 7.5. Перенос электрона в промежуточном многоядерном комплексе

Большое разнообразие полиядерных комплексов получено благодаря использованию органических лигандов, содержащих несколько донорных групп. Условием их образования является такое расположение донорных групп в лиганде, которое не позволяет замыкаться хелатным циклам. Нередки случаи, когда лиганд имеет возможность замыкать хелатный цикл и одновременно выступать в роли мостико-вого.

Действующим началом переноса электрона являются переходные металлы, проявляющие несколько устойчивых степеней окисления. Это придает ионам титана, железа и меди идеальные свойства переносчиков электронов. Совокупность вариантов образования гетерова-лентных (ГВК) и гетероядерных комплексов (ГЯК) на основе Ti и Fe представлена на рис. 7.6.

Реакцию

Реакция (1) называется перекрестной реакцией. В обменных реакциях интермедиатом будут гетеровалентные комплексы. Все теоретически возможные комплексы действительно образуются в растворе в тех или иных условиях, что доказано различными физико-химическими

Рис. 7.6. Образование гетеровалентных комплексови гетероядерных комплексов, содержащих Ti и Fe

методами. Для осуществления переноса электронов реагенты должны находиться в близких по энергии состояниях. Это требование называется принципом Франка-Кондона. Перенос электрона может происходить между атомами одного переходного элемента, находящихся в разной степени окисления ГВК, или различных элементов ГЯК, природа металлоцен-тров которых различна. Эти соединения можно определить как комплексы переноса электронов. Они являются удобными переносчиками электронов и протонов в биологических системах. Присоединение и отдача электрона вызывает изменения лишь электронной конфигурации металла, не изменяя структуру органической составляющей комплекса. Все эти элементы имеют несколько устойчивых степеней окисления (Ti +3 и +4; Fe +2 и +3; Cu +1 и +2). По нашему мнению, этим системам предоставлена природой уникальная роль обеспечения обратимости биохимических процессов с минимальными энергетическими затратами. К обратимым реакциям относят реакции, имеющие термодинамические и термохимические константы от 10 -3 до 10 3 и с небольшим значением ΔG o и Е o процессов. В данных условиях исходные вещества и продукты реакции могут находиться в соизмеримых концентрациях. При изменении их в некотором диапазоне легко можно достичь обратимости процесса, поэтому в биологических системах многие процессы носят колебательный (волновой) характер. Окислительно-восстановительные системы, имеющие в своем составе вышеуказанные пары, перекрывают широкий диапазон потенциалов, что позволяет им вступать во взаимодействия, сопровождающиеся умеренными изменениями ΔG o и Е° , со многими субстратами.

Вероятность образования ГВК и ГЯК значительно повышается, когда раствор содержит потенциально мостиковые лиганды, т.е. молекулы или ионы (аминокислот, гидроксикислот, комплексонов и др.), способные связать сразу два металлоцентра. Возможность делокализации электрона в ГВК способствует понижению полной энергии комплекса.

Более реально совокупность возможных вариантов образования ГВК и ГЯК, в которых природа металлоцентров разная, видна на рис. 7.6. Подробное описание образования ГВК и ГЯК и их роль в биохимических системах рассмотрены в работах А.Н. Глебова (1997). Окислительно-восстановительные пары должны структурно подстроиться друг к другу, тогда перенос становится возможным. Подбирая компоненты раствора, можно «удлинять» расстояние, на которое переносится электрон от восстановителя к окислителю. При согласованном перемещении частиц может происходить перенос электрона на большие расстояния по волновому механизму. В качестве «коридора» может быть гидратированная белковая цепочка и др. Высока вероятность переноса электрона на расстояние до 100А. Длину «коридора» можно увеличить добавками (ионами щелочных металлов, фоновыми электролитами). Это открывает большие возможности в области управления составом и свойствами ГВК и ГЯК. В растворах они играют роль своеобразного «черного ящика», наполненного электронами и протонами. В зависимости от обстоятельств он может отдавать их другим компонентам или пополнять свои «запасы». Обратимость реакций с их участием позволяет многократно участвовать в циклических процессах. Электроны переходят от одного металлического центра к другому, осциллируют между ними. Молекула комплекса остается несимметричной и может принимать участие в окислительно-восстановительных процессах. ГВК и ГЯК активно участвуют в колебательных процессах в биологических средах. Данный тип реакций называют колебательными реакциями. Они обнаружены в ферментативном катализе, синтезе белков и других биохимических процессах, сопутствующих биологическим явлениям. Сюда относятся периодические процессы клеточного метаболизма, волны активности в сердечной ткани, в ткани мозга и процессы, происходящие на уровне экологических систем. Важным этапом обмена веществ является отщепление водорода от питательных веществ. Атомы водорода переходят при этом в ионное состояние, а отделенные от них электроны вступают в дыхательную цепь и отдают свою энергию на образование АТФ. Как нами установлено, комплексонаты титана являются активными переносчиками не только электронов, но и протонов. Способность ионов титана выполнять свою роль в активном центре ферментов типа каталаз, пероксидаз и цитохромов определяется его высокой способностью к комплексообразованию, формированию геометрии координированного иона, образованию многоядерных ГВК и ГЯК различного состава и свойств в функции pH, концентрации переходного элемента Ti и органической составляющей комплекса, их мольного соотношения. Эта способность проявляется в повышении селективности комплекса

по отношению к субстратам, продуктам метаболических процессов, активацией связей в комплексе (ферменте) и субстрате посредством координации и изменения формы субстрата в соответствии со стериче-скими требованиями активного центра.

Электрохимические превращения в организме, связанные с переносом электронов, сопровождаются изменением степени окисления частиц и возникновением окислительно-восстановительного потенциала в растворе. Большая роль в этих превращениях принадлежит многоядерным комплексам ГВК и ГЯК. Они являются активными регуляторами свободнорадикальных процессов, системой утилизации активных форм кислорода, перекиси водорода, окислителей, радикалов и участвуют в окислении субстратов, а также в поддержании антиоокислительного гомеостаза, в защите организма от окислительного стресса. Их ферментативное действие на биосистемы аналогично ферментам (цитохро-мам, супероксиддисмутазе, каталазе, пероксидазе, глутатион-редуктазе, дегидрогеназам). Все это указывает на высокие антиоксидантные свойства комплексонатов переходных элементов.

7.14. ВОПРОСЫ И ЗАДАЧИ ДЛЯ САМОПРОВЕРКИ ПОДГОТОВЛЕННОСТИ К ЗАНЯТИЯМ И ЭКЗАМЕНАМ

1.Дать понятие о комплексных соединениях. В чем их отличие от двойных солей, и что у них общее?

2.Составьте формулы комплексных соединений по их названию: аммоний дигидроксотетрахлороплатинат (IV), триамминтринитроко-бальт (III), дайте их характеристику; укажите внутреннюю и внешнюю координационную сферу; центральный ион и степень его окисления: лиганды, их число и дентатность; характер связей. Напишите уравнение диссоциации в водном растворе и выражение для константы устойчивости.

3.Общие свойства комплексных соединений, диссоциация, устойчивость комплексов, химические свойства комплексов.

4.Как реакционная способность комплексов характеризуется с термодинамических и кинетических позиций?

5.Какие аминокомплексы будут более прочными, чем тетраамино-медь (II), а какие менее прочными?

6.Приведите примеры макроциклических комплексов, образованных ионами щелочных металлов; ионами d-элементов.

7.По какому признаку комплексы относят к хелатным? Приведите примеры хелатных и нехелатных комплексных соединений.

8.На примере глицината меди дайте понятие о внутрикомплексных соединениях. Напишите структурную формулу комплексоната магния с этилендиаминтетрауксусной кислотой в натриевой форме.

9.Приведите схематично структурный фрагмент какого-либо полиядерного комплекса.

10.Дайте определение полиядерных, гетероядерных и гетерова-лентных комплексов. Роль переходных металлов в их образовании. Биологическая роль данных компонентов.

11.Какие типы химической связи встречаются в комплексных со единениях?

12.Перечислите основные типы гибридизации атомных орбиталей, которые могут возникать у центрального атома в комплексе. Какова геометрия комплекса в зависимости от типа гибридизации?

13.Исходя из электронного строения атомов элементов s-, p- и d-блоков сопоставить способность к комплексообразованию и их место в химии комплексов.

14.Дайте определение комплексонов и комплексонатов. Приведите примеры наиболее используемых в биологии и медицине. Приведите термодинамические принципы, на которых основана хелатотерапия. Применение комплексонатов для нейтрализации и элиминации ксенобиотиков из организма.

15.Рассмотрите основные случаи нарушения металлолигандного гомеостаза в организме человека.

16.Приведете примеры биокомплексных соединений, содержащих железо, кобальт, цинк.

17.Примеры конкурирующих процессов с участием гемоглобина.

18.Роль ионов металлов в ферментах.

19.Объясните, почему для кобальта в комплексах со сложными лигандами (полидентатными) более устойчива степень окисления +3, а в обычных солях, таких, как галогениды, сульфаты, нитраты, степень окисления +2?

20.Для меди характерны степени окисления +1 и +2. Может ли медь катализировать реакции с переносом электронов?

21.Может ли цинк катализировать окислительно-восстановительные реакции?

22.Каков механизм действия ртути как яда?

23.Укажите кислоту и основание в реакции:

AgNO 3 + 2NH 3 = NO 3 .

24.Объясните, почему в качестве лекарственнного препарата применяется калиево-натриевая соль гидроксиэтилидендифосфоновой кислоты, а не ОЭДФ.

25.Как с помощью ионов металлов, входящих в состав биокомплексных соединений, осуществляется транспорт электронов в организме?

7.15. ТЕСТОВЫЕ ЗАДАНИЯ

1. Степень окисления центрального атома в комплексном ионе 2- равна:

а)-4;

б)+2;

в)-2;

г)+4.

2. Наиболее устойчивый комплексный ион:

а) 2- , Кн = 8,5х10 -15 ;

б) 2- , Кн = 1,5х10 -30 ;

в) 2- , Кн = 4х10 -42 ;

г) 2- , Кн = 1х10 -21 .

3. В растворе содержится 0,1 моль соединения PtCl 4 4NH 3 . Реагируя с AgNO 3 , оно образует 0,2 моль осадка AgCl. Придайте исходному веществу координационную формулу:

а)Cl;

б)Cl 3 ;

в)Cl 2 ;

г)Cl 4 .

4. Какую форму имеют комплексы, образованные в результате sp 3 d 2 -ги- бридизации?

1)тетраэдра;

2)квадрата;

4)тригональной бипирамиды;

5)линейную.

5. Подберите формулу для соединения пентаамминхлорокобальт (III) сульфат:

а) Na 3 ;

6)[СоСl 2 (NH 3) 4 ]Сl;

в)К 2 [Со(SСN) 4 ];

г)SO 4 ;

д)[Со(Н 2 О) 6 ] С1 3 .

6. Какие лиганды являются полидентатными?

а)С1 - ;

б)H 2 O;

в)этилендиамин;

г)NH 3 ;

д)SCN - .

7. Комплексообразователи - это:

а)атомы-доноры электронных пар;

в)атомы- и ионы-акцепторы электронных пар;

г)атомы- и ионы-доноры электронных пар.

8. Наименьшей комплексообразующей способностью обладают элементы:

а)s; в) d;

б) p ; г) f

9. Лиганды - это:

а)молекулы-доноры электронных пар;

б)ионы-акцепторы электронных пар;

в)молекулы- и ионы-доноры электронных пар;

г)молекулы- и ионы-акцепторы электронных пар.

10. Связь во внутренней координационной сфере комплекса:

а)ковалентная обменная;

б)ковалентная донорно-акцепторная;

в)ионная;

г)водородная.

11. Лучшим комплексообразователем будет являться:

Образованная из других, более простых частиц, также способных к самостоятельному существованию. Иногда комплексными частицами называют сложные химические частицы, все или часть связей в которых образованы по .

Комплексообразователь - центральный атом комплексной частицы. Обычно комплексообразователь - атом элемента , образующего металл , но это может быть и атом кислорода , азота , серы , йода и других элементов, образующих неметаллы . Комплексообразователь обычно положительно заряжен и в таком случае именуется в современной научной литературе металлоцентром ; заряд комплексообразователя может быть также отрицательным или равным нулю.

Дентатность лиганда определяется числом координационных мест, занимаемых лигандом в координационной сфере комплексообразователя. Различают монодентатные (унидентатные) лиганды, связанные с центральным атомом через один из своих атомов, то есть одной ковалентной связью), бидентатные (связанные с центральным атомом через два своих атома, то есть, двумя связями), три- , тетрадентатные и т. д.

Координационный полиэдр - воображаемый молекулярный многогранник, в центре которого расположен атом-комплексообразователь, а в вершинах - частицы лигандов, непосредственно связанные с центральным атомом.

Тетракарбонилникель
- дихлородиамминплатина(II)

По числу мест, занимаемых лигандами в координационной сфере

1) Монодентатные лиганды . Такие лиганды бывают нейтральными (молекулы Н 2 О, NH 3 , CO, NO и др.) и заряженными (ионы CN − , F − , Cl − , OH − , SCN − , S 2 O 3 2− и др.).

2) Бидентатные лиганды . Примерами служат лиганды: ион аминоуксусной кислоты H 2 N - CH 2 - COO − , оксалатный ион − O - CO - CO - O − , карбонат-ион СО 3 2− , сульфат-ион SO 4 2− .

3) Полидентатные лиганды . Например, комплексоны - органические лиганды, содержащие в своём составе несколько групп −С≡N или −COOH (этилендиаминтетрауксусная кислота - ЭДТА). Циклические комплексы, образуемые некоторыми полидентатными лигандами, относят к хелатным (гемоглобин и др.).

По природе лиганда

1) Аммиакаты - комплексы, в которых лигандами служат молекулы аммиака , например: SO 4 , Cl 3 , Cl 4 и др.

2) Аквакомплексы - в которых лигандом выступает вода : Cl 2 , Cl 3 и др.

3) Карбонилы - комплексные соединения, в которых лигандами являются молекулы оксида углерода(II) : , .

4) Ацидокомплексы - комплексы, в которых лигандами являются кислотные остатки . К ним относятся комплексные соли: K 2 , комплексные кислоты: H 2 , H 2 .

5) Гидроксокомплексы - комплексные соединения, в которых в качестве лигандов выступают гидроксид-ионы: Na 2 , Na 2 и др.

Номенклатура

1) В названии комплексного соединения первым указывают отрицательно заряженную часть - анион , затем положительную часть - катион .

2) Название комплексной части начинают с указания состава внутренней сферы. Во внутренней сфере прежде всего называют лиганды - анионы, прибавляя к их латинскому названию окончание «о». Например: Cl − - хлоро, CN − - циано, SCN − - тиоцианато, NO 3 − - нитрато, SO 3 2− - сульфито, OH − - гидроксо и т. д. При этом пользуются терминами: для координированного аммиака - аммин, для воды - аква, для оксида углерода(II) - карбонил.

(NH 4) 2 - дигидроксотетрахлороплатинат(IV) аммония

[Сr(H 2 O) 3 F 3 ] - трифторотриаквахром

[Сo(NH 3) 3 Cl(NO 2) 2 ] - динитритохлоротриамминкобальт

Cl 2 - хлорид дихлоротетраамминплатины(IV)

NO 3 - нитрат тетрааквалития

История

Основателем координационной теории комплексных соединений является швейцарский химик Альфред Вернер (1866-1919). Координационная теория Вернера 1893 года была первой попыткой объяснить структуру комплексных соединений. Эта теория была предложена до открытия электрона Томсоном в 1896 году, и до разработки электронной теории валентности . Вернер не имел в своём распоряжении никаких инструментальных методов исследований, а все его исследования были сделаны интерпретацией простых химических реакций .

Представления о возможности существования «дополнительных валентностей», зародившиеся при изучении четвертичных аминов , Вернер применяет и к «комплексным соединениям». В статье «К теории сродства и валентности», опубликованной в 1891 г., Вернер определяет сродство как «силу, исходящую из центра атома и равномерно распространяющуюся во всех направлениях, геометрическое выражение которой, таким образом, представляет собой не определённое число основных направлений, а сферическую поверхность». Два года спустя в статье «О строении неорганических соединений» Вернер выдвинул координационную теорию, согласно которой в неорганических молекулярных соединениях центральное ядро составляют комплексообразующие атомы. Вокруг этих центральных атомов расположено в форме простого геометрического полиэдра определённое число других атомов или молекул . Число атомов, сгруппированных вокруг центрального ядра, Вернер назвал координационным числом . Он считал, что при координационной связи существует общая пара электронов , которую одна молекула или атом отдает другой. Поскольку Вернер предположил существование соединений, которые никто никогда не наблюдал и не синтезировал , его теория вызвала недоверие со стороны многих известных химиков, считавших, что она без всякой необходимости усложняет представление о химической структуре и связях. Поэтому в течение следующих двух десятилетий Вернер и его сотрудники создавали новые координационные соединения, существование которых предсказывалось его теорией. В числе созданных ими соединений были молекулы, обнаруживающие оптическую активность , то есть способность отклонять поляризованный свет, но не содержащие атомов углерода , которые, как полагали, были необходимы для оптической активности молекул.

В 1911 г. осуществление Вернером синтеза более чем 40 оптически активных молекул, не содержащих атомов углерода, убедило химическое сообщество в справедливости его теории.

В 1913 г. Вернеру была присуждена Нобелевская премия по химии «в знак признания его работ о природе связей атомов в молекулах, которые позволяли по-новому взглянуть на результаты ранее проведённых исследований и открывали новые возможности для научно-исследовательской работы, особенно в области неорганической химии ». По словам Теодора Нордстрема, который представлял его от имени Шведской королевской академии наук, работа Вернера «дала импульс развитию неорганической химии», стимулировав возрождение интереса к этой области после того, как она какое-то время пребывала в забвении.

Структура и стереохимия

Строение комплексных соединений рассматривают на основе координационной теории, предложенной в 1893 г. швейцарским химиком Альфредом Вернером , лауреатом Нобелевской премии . Его научная деятельность проходила в Цюрихском университете. Ученый синтезировал много новых комплексных соединений, систематизировал ранее известные и вновь полученные комплексные соединения и разработал экспериментальные методы доказательства их строения.

В соответствии с этой теорией в комплексных соединениях различают комплексообразователь, внешнюю и внутреннюю сферы. Комплексообразователем обычно является катион или нейтральный атом . Внутреннюю сферу составляет определённое число ионов или нейтральных молекул , которые прочно связаны с комплексообразователем. Их называют лигандами . Число лигандов определяет координационное число (КЧ) комплексообразователя. Внутренняя сфера может иметь положительный, отрицательный или нулевой заряд.

Остальные ионы, не разместившиеся во внутренней сфере, находятся на более далеком расстоянии от центрального иона, составляя внешную координационную сферу .

Если заряд лигандов компенсирует заряд комплексообразователя, то такие комплексные соединения называют нейтральными или комплексами-неэлектролитами: они состоят только из комплексообразователя и лигандов внутренней сферы. Таким нейтральным комплексом является, например, .

Природа связи между центральным ионом (атомом) и лигандами может быть двоякой. С одной стороны, связь обусловлена силами электростатического притяжения. С другой - между центральным атомом и лигандами может образоваться связь по донорно-акцепторному механизму по аналогии с ионом аммония . Во многих комплексных соединениях связь между центральным ионом (атомом) и лигандами обусловлена как силами электростатического притяжения , так и связью, образующейся за счёт неподеленных электронных пар комплексообразователя и свободных орбиталей лигандов.

Комплексные соединения, имеющие внешнюю сферу, являются сильными электролитами и в водных растворах диссоциируют практически нацело на комплексный ион и ионы внешней сферы.

При обменных реакциях комплексные ионы переходят из одних соединений в другие, не изменяя своего состава.

Наиболее типичными комплексообразователями являются катионы d-элементов. Лигандами могут быть:

а) полярные молекулы - NH 3 , Н 2 О, CO, NO;
б) простые ионы - F − , Cl − , Br − , I − , H + ;
в) сложные ионы - CN − , SCN − , NO 2 − , OH − .

Для описания взаимосвязи пространственного строения комплексных соединений и их физико-химических свойства используются представления стереохимии . Стереохимический подход - удобный прием представления свойств вещества в части влияния того или иного фрагмента структуры вещества на свойство.

Объекты стереохимии - комплексные соединения, органические вещества , высокомолекулярные синтетические и природные соединения. А. Вернер, один из основоположников координационной химии, приложил большие усилия к развитию неорганической стереохимии. Именно стереохимия является центральной в этой теории, до сих пор остающийся ориентиром в координационной химии.

Изомерия координационных соединений

Существуют изомеры двух типов:

1) соединения, в которых состав внутренней сферы и строение координированных лигандов идентичны (геометрические, оптические, конформационные, координационного положения);

2) соединения, для которых возможны различия в составе внутренней сферы и строении лигандов (ионизационные, гидратные, координационные, лигандные).

Пространственная (геометрическая) изомерия

2. Сначала заполняются орбитали, имеющие меньшую энергию .

С учетом этих правил при числе d-электронов в комплексообразователе от 1 до 3 или 8, 9, 10 их можно расположить по d-орбиталям только одним способом (в соответствии с правилом Хунда). При числе электронов от 4 до 7 в октаэдрическом комплексе возможно либо занятие орбиталей , уже заполненных одним электроном, либо заполнение свободных dγ -орбиталей более высокой энергии. В первом случае потребуется энергия на преодоление отталкивания между электронами, находящимися на одной и той же орбитали, во втором - для перехода на орбиталь более высокой энергии. Распределение электронов по орбиталям зависит от соотношения между величинами энергий расщепления (Δ) и спаривания электронов (Р). При низких значениях Δ («слабое поле»), величина Δ может быть < Р, тогда электроны займут разные орбитали, а спины их будут параллельны. При этом образуются внешнеорбитальные (высокоспиновые) комплексы, характеризующиеся определённым магнитным моментом µ. Если энергия межэлектронного отталкивания меньше, чем Δ («сильное поле»), то есть Δ > Р, происходит спаривание электронов на dε -орбиталях и образование внутриорбитальных (низкоспиновых) комплексов, магнитный момент которых µ =0.

Применение

Комплексные соединения имеют важное значение для живых организмов, так гемоглобин крови образует комплекс с кислородом для доставки его к клеткам , хлорофилл находящийся в растениях является комплексом.

Комплексные соединения находят широкое применение в различных отраслях промышленности. Химические методы извлечения металлов из руд связаны с образованием КС. Например, для отделения золота от породы руду обрабатывают раствором цианида натрия в присутствии кислорода . Метод извлечения золота из руд с помощью растворов цианидов был предложен в 1843 г. русским инженером П. Багратионом. Для получения чистых железа , никеля , кобальта используют термическое разложение карбонилов металлов . Эти соединения - летучие жидкости, легко разлагающиеся с выделением соответствующих металлов .

Широкое применение комплексные соединения получили в аналитической химии в качестве индикаторов .

Многие КС обладают каталитической активностью, поэтому их широко используют в неорганическом и органическом синтезах. Таким образом, с использованием комплексных соединений связана возможность получения многообразных химических продуктов: лаков , красок , металлов , фотоматериалов , катализаторов , надёжных средств для переработки и консервирования пищи и т. д.

Комплесные соединения цианидов имеют важное значение в гальванопластике , так как из обычной соли бывает невозможно получить настолько прочное покрытие как при использовании комплексов.

Ссылки

Литература

  1. Ахметов Н. С. Общая и неорганическая химия. - М.: Высшая школа, 2003. - 743 с.
  2. Глинка Н. Л. Общая химия. - М.: Высшая школа, 2003. - 743 с.
  3. Киселев Ю. М. Химия координационных соединений. - М.: Интеграл-Пресс, 2008. - 728 с.

Комплексные соединения

Урок-лекция 11 класс

Занятие, представленное на конкурс «Я иду на урок», я провожу в 11-м биолого-химическом классе, где на изучение химии отводится 4 часа в неделю.

Тему «Комплексные соединения» я взяла, во-первых, потому что эта группа веществ имеет исключительно большое значение в природе; во-вторых, многие задания ЕГЭ включают понятие о комплексных соединениях; в-третьих, учащиеся из этого класса выбирают профессии, связанные с химией, и будут встречаться с группой комплексных соединений в будущем.

Цель. Сформировать понятие о составе, классификации, строении и основах номенклатуры комплексных соединений; рассмотреть их химические свойства и показать значение; расширить представления учащихся о многообразии веществ.

Оборудование. Образцы комплексных соединений.

План урока

I. Организационный момент.

II. Изучение нового материала (лекция).

III. Подведение итогов и постановка домашнего задания.

План лекции

1. Многообразие веществ.

2. Координационная теория А.Вернера.

3. Строение комплексных соединений.

4. Классификация комплексных соединений.

5. Природа химической связи в комплексных соединениях.

6. Номенклатура комплексных соединений.

7. Химические свойства комплексных соединений.

8. Значение комплексных соединений.

ХОД УРОКА

I. Организационный момент

II. Изучение нового материала

Многообразие веществ

Мир веществ многообразен, и мы уже знакомы с группой веществ, которые принадлежат к комплексным соединениям. Данными веществами стали заниматься с XIX в., но понять их строение с позиций существовавших представлений о валентности было трудно.

Координационная теория А.Вернера

В 1893 г. швейцарским химиком-неоргаником Альфредом Вернером (1866–1919) была сформулирована теория, позволившая понять строение и некоторые свойства комплексных соединений и названная координационной теорией*. Поэтому комплексные соединения часто называют координационными соединениями.

Соединения, в состав которых входят сложные ионы, существующие как в кристалле, так и в растворе, называются комплексными, или координационными.

Строение комплексных соединений

Согласно теории Вернера центральное положение в комплексных соединениях занимает, как правило, ион металла, который называют центральным ионом, или комплексообразователем.

Комплексообразователь – частица (атом, ион или молекула), координирующая (располагающая) вокруг себя другие ионы или молекулы.

Комплексообразователь обычно имеет положительный заряд, является d -элементом, проявляет амфотерные свойства, имеет координационное число 4 или 6. Вокруг комплексообразователя располагаются (координируются) молекулы или кислотные остатки – лиганды (адденды).

Лиганды – частицы (молекулы и ионы), координируемые комплексообразователем и имеющие с ним непосредственно химические связи (например, ионы: Cl – , I – , NO 3 – , OH – ; нейтральные молекулы: NH 3 , H 2 O, CO).

Лиганды не связаны друг с другом, так как между ними действуют силы отталкивания. Когда лигандами являются молекулы, между ними возможно молекулярное взаимодействие. Координация лигандов около комплексообразователя является характерной чертой комплексных соединений (рис. 1).

Координационное число – это число химических связей, которые комплексообразователь образует с лигандами.

Рис. 2. Тетраэдрическая структура иона –

Значение координационного числа комплексообразователя зависит от его природы, степени окисления, природы лигандов и условий (температура, концентрация), при которых протекает реакция комплексообразования. Координационное число может иметь значения от 2 до 12. Наиболее распространенными являются координационные числа 4 и 6. Для координационного числа 4 структура комплексных частиц может быть тетраэдрической – (рис. 2) и в виде плоского квадрата (рис. 3). Комплексные соединения с координационным числом 6 имеют октаэдрическое строение 3– (рис. 4).

Рис. 4. Ион 3 – октаэдрического строения

Комплексообразователь и окружающие его лиганды составляют внутреннюю сферу комплекса. Частица, состоящая из комплексообразователя и окружающих лигандов, называется комплексным ионом. При изображении комплексных соединений внутреннюю сферу (комплексный ион) ограничивают квадратными скобками. Остальные составляющие комплексного соединения расположены во внешней сфере (рис. 5).

Суммарный заряд ионов внешней сферы должен быть равен по значению и противоположен по знаку заряду комплексного иона:

Классификация комплексных соединений

Большое многообразие комплексных соединений и их свойств не позволяет создать единую классификацию. Однако можно группировать вещества по некоторым отдельным признакам.

1) По составу.

2) По типу координируемых лигандов.

а) Аквакомплексы – это комплексные катионы, в которых лигандами являются молекулы H 2 O. Их образуют катионы металлов со степенью окисления +2 и больше, причем способность к образованию аквакомплексов у металлов одной группы периодической системы уменьшается сверху вниз.

Примеры аквакомплексов:

Cl 3 , (NO 3) 3 .

б)Гидроксокомплексы – это комплексные анионы, в которых лигандами являются гидроксид-ионы OH – . Комплексообразователями являются металлы, склонные к проявлению амфотерных свойств – Be, Zn, Al, Cr.

Например: Na, Ba.

в) Аммиакаты – это комплексные катионы, в которых лигандами являются молекулы NH 3 . Комплексообразователями являются d -элементы.

Например: SO 4 , Cl.

г) Ацидокомплексы – это комплексные анионы, в которых лигандами являются анионы неорганических и органических кислот.

Например: K 3 , Na 2 , K 4 .

3) По заряду внутренней сферы.

Природа химической связи в комплексных соединениях

Во внутренней сфере между комплексообразователем и лигандами существуют ковалентные связи, образованные в том числе и по донорно-акцепторному механизму. Для образования таких связей необходимо наличие свободных орбиталей у одних частиц (имеются у комплексообразователя) и неподеленных электронных пар у других частиц (лиганды). Роль донора (поставщика электронов) играет лиганд, а акцептором, принимающим электроны, является комплексообразователь. Донорно-акцепторная связь возникает как результат перекрывания свободных валентных орбиталей комплексообразователя с заполненными орбиталями донора.

Между внешней и внутренней сферой существует ионная связь. Приведем пример.

Электронное строение атома бериллия:

Электронное строение атома бериллия в возбужденном состоянии:

Электронное строение атома бериллия в комплексном ионе 2– :

Пунктирными стрелками показаны электроны фтора; две связи из четырех образованы по донорно-акцепторному механизму. В данном случае атом Be является акцептором, а ионы фтора – донорами, их свободные электронные пары заполняют гибридизованные орбитали (sp 3 -гибридизация).

Номенклатура комплексных соединений

Наибольшее распространение имеет номенклатура, рекомендованная IUPAC. Название комплексного аниона начинается с обозначения состава внутренней сферы: число лигандов обозначается греческими числительными: 2–ди, 3–три, 4–тетра, 5–пента, 6–гекса и т.д., далее следуют названия лигандов, к которым прибавляют соединительную гласную «о»: Cl – – хлоро-, CN – – циано-, OH – – гидроксо- и т.п. Если у комплексообразователя переменная степень окисления, то в скобках римскими цифрами указывают его степень окисления, а его название с суффиксом -ат: Zn – цинкат , Fe – феррат (III), Au – аурат (III). Последним называют катион внешней сферы в родительном падеже.

K 3 – гексацианоферрат(III) калия,

K 4 – гексацианоферрат(II) калия,

K 2 – тетрагидроксоцинкат калия.

Названия соединений, содержащих комплексный катион , строятся из названий анионов внешней среды, после которых указывается число лигандов, дается латинское название лиганда (молекула аммиака NH 3 – аммин, молекула воды H 2 O – аква от латинского названия воды) и русское название элемента-комплексообразователя; римской цифрой в скобках указывается степень окисления элемента-комплексообразователя, если она переменная. Например:

SO 4 – сульфат тетраамминмеди(II),

Cl 3 – хлорид гексаакваалюминия.

Химические свойства комплексных соединений

1. В растворе комплексные соединения ведут себя как сильные электролиты, т.е. полностью диссоциируют на катионы и анионы:

Cl 2 = Pt(NH 3) 4 ] 2+ + 2Cl – ,

K 2 = 2K + + 2– .

Диссоциация по такому типу называется первичной.

Вторичная диссоциация связана с удалением лигандов из внутренней сферы комплексного иона:

2– PtCl 3 – + Cl – .

Вторичная диссоциация происходит ступенчато: комплексные ионы ( 2–) являются слабыми электролитами.

2. При действии сильных кислот происходит разрушение гидроксокомплексов, например:

а) при недостатке кислоты

Na 3 + 3HCl = 3NaCl + Al(OH) 3 + 3H 2 O;

б) при избытке кислоты

Na 3 + 6HCl = 3NaCl + AlCl 3 + 6H 2 O.

3. Нагревание (термолиз) всех аммиакатов приводит к их разложению, например:

SO 4 CuSO 4 + 4NH 3 .

Значение комплексных соединений

Координационные соединения имеют исключительно большое значение в природе. Достаточно сказать, что почти все ферменты, многие гормоны, лекарства, биологически активные вещества представляют собой комплексные соединения. Например, гемоглобин крови, благодаря которому осуществляется перенос кислорода от легких к клеткам ткани, является комплексным соединением, содержащим железо (рис. 6), а хлорофилл, ответственный за фотосинтез в растениях, – комплексным соединением магния (рис. 7).

Значительную часть природных минералов, в том числе полиметаллических руд и силикатов, также составляют координационные соединения. Более того, химические методы извлечения металлов из руд, в частности меди, вольфрама, серебра, алюминия, платины, железа, золота и других, также связаны с образованием легкорастворимых, легкоплавких или летучих комплексов. Например: Na 3 – криолит, KNa 3 4 – нефелин (минералы, комплексные соединения, содержащие алюминий).

Современная химическая отрасль промышленности широко использует координационные соединения как катализаторы при синтезе высокомолекулярных соединений, при химической переработке нефти, в производстве кислот.

III. Подведение итогов и постановка домашнего задания

Домашнее задание.

1) Приготовиться по лекции к уроку-практикуму по теме: «Комплексные соединения».

2) Письменно дать характеристику следующим комплексным соединениям по строению и классифицировать по признакам:

K 3 , (NO 3) 3 , Na 2 , OH.

3) Написать уравнения реакций, при помощи которых можно осуществить превращения:

* За открытие этой новой области науки А.Вернер в 1913 г. был удостоен Нобелевской премии.

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ (координационные соединения), химические соединения, в которых можно выделить центральный атом (комплексообразователь) и непосредственно связанные с ним (координированные) один или несколько ионов и/или молекул. Координированные частицы называются лигандами, число донорных атомов в них, координированных центральным атомом, - его координационным числом. Центральный атом связывает лиганды как за счёт электростатического, так и за счёт донорно-акцепторного взаимодействия. Координационное число и степень окисления являются важнейшими характеристиками атома-комплексообразователя.

Центральной атом и координированные лиганды образуют внутреннюю координационную сферу комплексных соединений; при написании формулы комплексных соединений её обычно заключают в квадратные скобки. Внутри скобок запись производится в следующей последовательности: химический символ центрального атома, символы анионных, затем нейтральных лигандов с указанием их числа. Если внутренняя сфера несёт заряд, то его компенсируют противоионы, образующие внешнюю сферу. Внешнесферными могут быть и катионы, например К + в K 4 , и анионы, например SO 4 2- в SО 4 . Кроме противоионов, во внешней сфере могут находиться нейтральные молекулы. Примерами комплексных соединений, состоящих только из центрального атома и лигандов, могут служить Ti(CO) 7 , Сr(СО) 6 и другие карбонилы металлов.

Названия комплексных соединений строятся в соответствии с номенклатурными правилами ИЮПАК начиная с лигандов и учитывая их заряд; например, - дихлородиамминплатина(II), (NО 3) 3 - нитрат гексаамминкобальта(III), Na 2 - тетрахлоропалладат(II) натрия.

Историческая справка. Среди ранних, научно документированных, исследований комплексных соединений можно выделить получение Cl 2 . В 1597 А. Либавием и KFe в 1704 году немецким ремесленником Г. Дисбахом, однако в соответствии с существующими на тот период представлениями эти вещества относили к двойным солям. Началом систематического изучения комплексных соединений обычно считают открытие французского химика Б. Тассера, описавшего в 1798 году появление коричневой окраски в аммиачных растворах хлорида кобальта при образовании хлорида гексаамминкобальта(III) Cl 3 . Важной особенностью этого исследования было понимание того, что образующееся соединение является продуктом сочетания способных к самостоятельному существованию валентно-насыщенных, весьма устойчивых «простых» соединений и что для водных растворов образующегося «сложного», или комплексного (от латинского complexus - сочетание), соединения характерны свойства, отличные от свойств составляющих его простых соединений. В 19 веке было синтезировано большое число разнообразных комплексных соединений; среди экспериментальных исследований можно выделить работы датского химика В. Цейзе, получившего комплексные соединения платины с органическими лигандами К (соль Цейзе, 1827), и С. Йёргенсена (синтезировал комплексные соединения кобальта, хрома, родия, платины).

В этот же период Т. Грэм, К. К. Клаус и другие учёные делают попытки объяснить существование и структуру комплексных соединений. Из ранних теорий наиболее широко известна цепная теория шведского химика К. Бломстранда, развитая С. Йёргенсеном (теория Бломстранда - Иёргенсена, 1869), позволившая объяснить строение некоторых классов комплексных соединений (в частности, аммиакатов). Обобщённое представление о пространственном строении комплексных соединений дала координационная теория, предложенная А. Вернером в 1893 году (работа удостоена в 1913 Нобелевской премии). Координационная теория опровергала общепринятые для объяснения строения неорганических соединений представления о постоянной и направленной валентности. А. Вернер ввёл важные для целого исторического периода понятия «главной» и «побочной» валентности, координации, координационного числа, геометрии комплексных соединений, создал основы классификации комплексных соединений; вопрос о природе главной и побочной валентности в координационной теории не рассматривался. Разрешение вопроса о природе координационной связи стало возможным после создания электронной теории валентности (Г. Льюис, 1916). Основная заслуга в использовании этой теории для объяснения природы координационной связи принадлежит английскому химику Н. Сиджвику. Согласно концепции Сиджвика (1923), главные валентности были интерпретированы как результат переноса электрона, побочные - как результат обобществления электронных пар. Развитие современных представлений о природе координационной связи связано с использованием квантово-химических подходов - теории кристаллического поля, метода валентных связей, метода молекулярных орбиталей, теории поля лигандов; основной вклад в распространение на комплексные соединения метода валентных связей принадлежит Л. Полингу, теории кристаллического поля - американскому химику Л. Оргелу. Развитию химии комплексных соединений способствовали исследования американских учёных Дж. Бейлара, Р. Пирсона, Г. Грея, отечественных химиков И. И. Черняева, Л. А. Чугаева, А. А. Гринберга, К. Б. Яцимирского и др.

В течение длительного периода химия комплексных соединений - координационная химия - считалась одним из разделов неорганической химии, поскольку большинство известных комплексных соединений содержало в качестве лигандов неорганические молекулы или ионы (аммиак, воду, цианогруппу и т. п.). Выделение координационной химии в самостоятельный, интенсивно развивающийся раздел химической науки связано не только с многочисленностью комплексных соединений (комплексные соединения по распространённости - вторые после органических соединений, известны практически для всех элементов-металлов и для некоторых неметаллов, содержат как неорганические, так и органические лиганды самых разнообразных типов), стремительным ростом количества изучаемых объектов и открытием новых классов комплексных соединений (металлоорганических соединений π-комплексного типа, природных комплексных соединений и их синтетических аналогов и пр.), но и с разработкой теоретических представлений, позволяющих рассматривать разнообразные классы комплексных соединений на единой основе. Междисциплинарное положение координационной химии обусловливает необходимость использования для её развития методов неорганической, физической, органической, аналитической, структурной химии. Изучение химических и физико-химических свойств комплексных соединений способствует установлению закономерностей, представляющих интерес для органической, биологической химии, катализа, электрохимии, фотохимии, химической технологии, материаловедения, медицины и других смежных областей.

Классификация комплексных соединений. Сложность классификации комплексных соединений обусловлена их многообразием. Наиболее общие принципы классификации комплексных соединений следующие: 1) по заряду: нейтральные, например ; катионные, например Cl 3 ; анионные, например ацидокомплексы (лигандами служат анионы кислот - ацидогруппы) - К 4 , К и др.; катионно-анионные, например ; молекулярные, например Ni(CO) 4 ; 2) по типу лигандов: простые, содержащие монодентатные лиганды, например Сl 2 ; хелатные - с присоединёнными к одному центральному атому через два или более соединительных, координирующих атома хелатными лигандами, например Сl 2 (en - этилендиамин Н 2 NCH 2 CH 2 NH 2 имеет два координирующих атома азота); содержащие лиганды одного типа, например Cl 3 ; содержащие различные лиганды, например ; 3) по количеству атомов элемента-комплексообразователя: моноядерные (все вышеприведённые примеры); полиядерные (или многоядерные), например [(en) 2 Cr(ОН) 2 Cr(en) 2 ]Br 4 ; к полиядерным комплексным соединениям относятся также кластеры, металлоцены, комплексы с мостиковыми лигандами и некоторые другие соединения. К комплексам с мостиковыми лигандами относятся гетерополисоединения - комплексные соединения анионного типа, содержащие во внутренней сфере в качестве лигандов анионы неорганических изополикислот (молибденовых, вольфрамовых и др.); изополианионы содержат мостиковые связи М-О-М, где М - атом-комплексообразователь (Р, As, Si, Ge, Ti, Ce), например К 3 , К 8 .

В отдельные группы выделяют комплексные соединения с одинаковыми лигандами: аквакомплексы (лигандами служат молекулы воды Н 2 О), например [Со(Н 2 О) 6 ]Сl 2 ; аммины (лиганды - молекулы аммиака NH 3), например Cl 2 , в эту же группу входят аммиакаты - комплексные соединения, содержащие молекулы аммиака не только во внутренней, но и во внешней сфере; гидроксокомплексы (лиганды - гидроксид-ионы ОН -), например К 2 ; гидридные комплексы (лиганды - гидрид-ионы Н -), например Na, Li; галогенаты (содержат атом галогена в качестве комплексообразователя и галогенидные лиганды); некоторые другие галогенаты, в свою очередь, подразделяются на анионгалогенаты, например Rb, NH 4 (соответственно изополигалогенат и гетерополигалогенат), и катионгалогенаты, например , .

Строение комплексных соединений. Химические связи в комплексных соединениях - координационная связь - осуществляется либо за счёт размещения неподелённой электронной пары донорного атома лиганда на свободных (и доступных) электронных орбиталях центрального атома (акцептора), либо за счёт перехода собственных электронов металла-комплексообразователя на незаполненные орбитали лиганда. В последнем случае чаще всего это молекулярные разрыхляющие π-орбитали, поэтому такая связь называется π-донорной, или π-дативной. Наиболее наглядную качественную информацию об образовании координационной связи даёт метод валентных связей. Детальные теоретические представления о строении комплексных соединений отражены в методе молекулярных орбиталей, теории кристаллического поля и теории поля лигандов. В рамках этих подходов даются объяснения электронного и геометрического строения комплексных соединений, проводятся оценки энергии связей. В современных теориях строения комплексных соединений и природы координационной связи используются представления о кислотах и основаниях Льюиса, принцип Пирсона о мягких и жёстких кислотах и основаниях (смотри в статье Кислоты и основания).

Центральным атомом в комплексных соединениях может быть как металл, так и неметалл. Прочность координационной связи металл - лиганд тем выше, чем выше заряд иона-комплексообразователя и чем меньше его радиус. Существенную роль играет электронная структура центрального атома. Ионы с электронной конфигурацией инертного газа обладают наименьшей склонностью к комплексообразованию. Более сильными комплексообразователями являются ионы Зd-элементов, имеющие как незавершённые, так и завершённые электронные оболочки. Из-за большего радиуса и размытости электронных орбиталей ионы Ad-, 5d-, 4f-элементов и особенно 5f-элементов образуют менее прочные связи. Эти общие закономерности обусловлены характером заполненности электронной оболочки металла, а также стерическими требованиями - оптимальным соотношением между размерами центрального атома и лигандов. В качестве атома-комплексообразователя чаще всего выступают атомы переходных металлов (Ti, V, Cr, Mn, Fe, Со, Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, редкоземельных элементов, актиноидов). Из неметаллов в качестве центральных атомов чаще всего выступают атомы В, Р, Si.

Лигандами в комплексных соединениях могут быть анионы неорганических и органических кислот (F - , Сl - , Вr - , I - , CN - , NO - 2 , SO 2- 4 , PO 3- 4 , C 2 O 2- 4 и др.), различные нейтральные молекулы, ионы и свободные радикалы, содержащие атомы О, N, Р, S, Se, С. Активность лиганда зависит от природы донорного атома: жёсткие катионы (щелочных, щёлочноземельных металлов, лантаноидов) предпочтительно связываются донорным атомом кислорода, более мягкие (переходных d-элементов) - донорными атомами N, S и др. Лиганд с несколькими донорными атомами (например, ЭДТА) способен образовывать хелатные циклы, обладающие высокой устойчивостью. Существенную роль при образовании комплексных соединений играет строение (в том числе гибкость) молекулы лиганда. По своей способности внедряться в электронные оболочки центрального атома, приводящей к изменению её строения, лиганды условно подразделяют на лиганды сильного и слабого поля.

При образовании комплексных соединений металл-комплексообразователь предоставляет свои валентные электронные орбитали (как заполненные, так и свободные) для размещения на них донорных электронных пар лигандов. Число и направленность заполненных общими электронами орбиталей определяют пространственное строение - стереохимию - комплексных соединений. Так, sp-комбинация молекулярных орбиталей соответствует линейному строению комплексных соединений, например + ; sp 2 - плоскому треугольному, например (AlF 3); sp 3 - тетраэдрическому, например 2+ ; sp 3 d - тригонально-бипирамидальному, например (NbF 5); dsp 2 - плоскому квадратному, например 2_ ; d 2 sp 3 или sp 3 d 2 - октаэдрическому, например 3+ , и т.д. Пространственное расположение лигандов вокруг центрального атома характеризуется координационным полиэдром.

Изомерия комплексных соединений. Многообразие комплексных соединений обусловлено образованием изомеров, одинаковых по составу, но отличающихся расположением лигандов вокруг центрального атома.

Гидратная (сольватная) изомерия обусловлена различным распределением молекул воды и анионных лигандов между внутренней и внешней сферами комплексных соединений. Например, соединение CrСl 3 ·6Н 2 О существует, по крайней мере, в трёх изомерных формах: Сl 3 - трихлорид гексааквахрома(III) фиолетового цвета, Сl 2 ·Н 2 О - моногидрат дихлорид пентааквахлорохрома(III) сине-зелёного цвета и Сl·2Н 2 О - дигидрат хлорид тетрааквадихлорохрома(III) зелёного цвета. Эти изомеры по-разному реагируют с раствором AgNO 3 , поскольку в осадок (AgCl) переходит только хлор, содержащийся во внешней сфере.

Ионизационная изомерия характеризуется различным распределением ионов между внешней и внутренней сферами комплексных соединений. При диссоциации в растворе такие изомеры образуют разные ионы. Например, для соединения CoBrSO 4 ·5NH 3 известны два изомера: SO 4 - красно-фиолетового цвета и Br - красного цвета.

Координационная изомерия заключается в различном распределении лигандов во внутренних координационных сферах. Например, изомеры и по-разному взаимодействуют с AgNO 3: образует осадок состава Ag 3 , приводит к осаждению соединения Ag 3 . Геометрическая изомерия (цис-, транс-изомерия) обусловлена различным пространственным расположением лигандов вокруг центрального атома. Так, комплекс существует в виде цис-изомера (формула I) и транс-изомера (формула II), отличающихся друг от друга рядом свойств.

Оптическая изомерия характеризуется способностью вращать плоскость поляризации плоскополяризованного света. Два изомера - правый и левый - отличаются друг от друга направлением вращения. Эти изомеры - зеркальные изображения друг друга - не могут быть совмещены в пространстве. Из двух геометрических изомеров бис-(этилендиамин)бромохлороникеля(II) только цис-изомер может существовать в виде двух оптических изомеров - энантиомеров:

Структурными (конформационными) изомерами называют такие координационные изомеры, в которых происходит изменение симметрии (пространственного строения) координационной сферы.

Свойства комплексных соединений. Различают термодинамическую стабильность комплексных соединений - меру возможности образования комплексных соединений или его превращения в другое соединение в равновесных условиях, и кинетическую, описывающую скорость реакций комплексов, ведущих к достижению равновесия. Термодинамическая стабильность комплексных соединений характеризуется терминами «устойчивый», «неустойчивый», кинетическая - «лабильный» и «инертный». Если при комнатной температуре реакция комплекса протекает за время смешения реагентов (около 1 минуты), комплексные соединения относят к лабильным; если реакция протекает с измеримой скоростью и половина времени жизни комплекса более 2 минут, такие комплексные соединения относят к инертным. Например, константа скорости изотопного обмена молекул воды во внутренней координационной сфере для инертного комплекса [Νi(Η 2 O) 6 ] 2+ равна 3,3∙10 4 с -1 , для лабильного [Сr(Н 2 O) 6 ] 3+ - 5∙10 -7 с -1 .

Устойчивость комплексных соединений определяется природой центрального атома и лиганда, а также стерическими факторами. В соответствии с принципом жёстких и мягких кислот и оснований, все центральные атомы условно разделяют на жёсткие и мягкие кислоты Льюиса. Жёсткие кислоты Льюиса имеют малый атомный или ионный радиус, высокую положительную степень окисления, предпочтительно взаимодействуют с неполяризующимися жёсткими основаниями, такими как F - , ОН - , NR - 2 (R - органический радикал). К жёстким кислотам Льюиса относятся ионы элементов в высших степенях окисления с электронной конфигурацией d 0 или d 10 . Мягкие кислоты Льюиса имеют большой атомный или ионный радиус и низкую степень окисления, более эффективно взаимодействуют с легко поляризующимися мягкими лигандами, такими как SR 2 , PR 3 , I - ,олефины. Мягкие кислоты Льюиса имеют электроны на d-орбиталях, способные к образованию π-связей в результате перекрывания с вакантными d-орбиталями мягких лигандов. Эти же центральные ионы образуют комплексные соединения с олефинами (типа соли Цейзе). Поскольку реакции комплексообразования подразумевают взаимодействие кислот и оснований Льюиса, с увеличением основных свойств лигандов устойчивость комплексов повышается. Лиганды с большей основностью при введении в раствор полностью замещают во внутренней сфере лиганды с меньшей основностью.

Количественной характеристикой устойчивости комплексных соединений служит его константа устойчивости К = /([M][L] n), где [ ML n ], [M], [L] - равновесные концентрации комплекса, комплексообразователя и лиганда соответственно. Для экспериментального определения константы устойчивости применяют физико-химические методы, позволяющие рассчитать равновесные концентрации (рН-метрическое титрование, кондуктометрию, спектрофотометрию, ЯМР-спектроскопию, полярографию, вольтамперометрию и др.).

Свободная энергия Гиббса реакции образования комплекса ΔG 0 связана с К, энтальпийным вкладом (ΔН 0) и энтропийным вкладом (ΔS) соотношением: -RTlnK = ΔG 0 = ΔН 0 - TΔS 0 , где Т - абсолютная температура, R - газовая постоянная. В реакциях комплексообразования энтальпийный вклад обусловлен разностью в суммарной энергии связей исходных частиц и образующегося комплексного соединения; обычно величины ΔН невелики. Энтропийный вклад связан с изменением числа частиц в реакции. Потеря подвижности иона металла и лигандов при соединении их в комплексные соединения обычно компенсируется за счёт высвобождения большого количества молекул растворителя (воды) из сольватных (гидратных) оболочек центрального атома и лигандов. Об устойчивости хелатных комплексных соединений смотри в статье Хелаты.

Комплексные соединения участвуют в реакциях присоединения, замещения или элиминирования лиганда, реакциях изомеризации координационного полиэдра, реакциях связанного лиганда (например, диссоциация, изомеризация лиганда) и реакциях электронного переноса.

Методы синтеза комплексных соединений. В молекуле комплексных соединений можно сочетать различные металлы и лиганды, что позволяет варьировать состав комплексных соединений, их строение и свойства. Используя соответствующую методику синтеза, можно получить комплексные соединения с практически любыми заданными свойствами и в любом агрегатном состоянии. Многочисленные методы синтеза комплексных соединений можно классифицировать по типам реакций, лежащих в их основе (реакции замещения, обмена, окислительно-восстановительные и т.д.). Выбор методики синтеза зависит от природы комплексных соединений (термодинамической устойчивости, кинетической инертности или лабильности) и в соответствии с этим основывается на термодинамических или на кинетических подходах. К группе методов, основанных на термодинамическом подходе, относятся реакции, направление которых определяется термодинамическими факторами: энергетической выгодностью образования продукта реакции по отношению к исходным соединениям (отрицательным изменением энергии Гиббса). В этих методах механизм реакций не играет существенной роли в процессе синтеза. В методах, основанных на кинетическом подходе, строение продукта генеалогически связано с исходными соединениями, синтез протекает в основном с использованием реакций замещения и важную роль играет их механизм. В этом случае образование продукта может быть энергетически выгодно, но возможно и получение метастабильных комплексных соединений, образование которых энергетически менее выгодно по сравнению с другими продуктами.

Специфическим методом получения комплексных соединений является темплатный синтез, когда сложные органические лиганды образуются в процессе взаимодействия иона металла с более простыми органическими соединениями. Ион металла - матрица, на которой закрепляются исходные лиганды, - способствует пространственной ориентации лигандов и тем самым определяет направление реакции их взаимодействия. При отсутствии ионов металла-комплексообразователя реакция не протекает или протекает с малым выходом. Темплатный синтез наиболее эффективен для получения макроциклических лигандов.

Области применения комплексных соединений. Металлоорганические комплексные соединения - один из наиболее перспективных классов химических соединений, на основе которых могут быть созданы молекулярные материалы. Сочетание в одной молекуле ионов металлов и органических лигандов, возможность целенаправленного изменения состава и строения комплексных соединений открывают возможности для создания на их основе молекулярных материалов с широким диапазоном функциональных свойств - оптических, магнитных, электрических и т.д. Комплексные соединения применяют для выделения и очистки платиновых металлов, золота, серебра, никеля, кобальта, меди, в процессах разделения редкоземельных элементов, щелочных металлов и в ряде других технологических процессов. Комплексные соединения используют в химическом анализе для качественного обнаружения и количественного определения многих химических элементов. В живых организмах различные типы комплексных соединений представлены соединениями ионов металлов (Fe, Cu, Mg, Mn, Mo, Zn, Со) с белками (металлопротеиды), витаминами, коферментами, другими веществами, выполняющими специфические функции в обмене веществ. Природные комплексные соединения участвуют в процессах дыхания, фотосинтеза, биологического окисления, в ферментативных процессах.

Комплексные соединения используют в экстракционных и сорбционных процессах разделения и тонкой очистки редких, цветных и благородных металлов, в аналитической химии. Комплексные соединения применяют в качестве селективных катализаторов различных процессов химической и микробиологической промышленности, для создания окислителей на основе фторидов галогенов и благородных газов, в качестве источников Н 2 и О 2 на основе гидридов и кислородсодержащих соединений, в медицине, в том числе в терапии различных видов опухолей, в качестве источника микроэлементов в животноводстве и сельском хозяйстве, для получения тонких покрытий на различных изделиях микроэлектроники для придания антикоррозионных свойств и механической прочности.

Лит.: Яцимирский К. Б. Термохимия комплексных соединений. М., 1951; он же. Введение в бионеорганическую химию. К., 1976; Басоло Ф., Джонсон Р. Химия координационных соединений. М., 1966; Гринберг А. А. Введение в химию комплексных соединений. 4-е изд. Л., 1971; Дей М.-К., Селбин Д. Теоретическая неорганическая химия. М., 1971; Басоло Ф., Пирсон Р. Механизмы неорганических реакций. М., 1971; Кукушкин Ю. Н. Химия координационных соединений. М., 1985; он же. Реакционная способность координационных соединений. Л., 1987; Берсукер И. Б. Электронное строение и свойства координационных соединений. 3-е изд. Л., 1986; Хаускрофт К. Е., Констебл Э. К. Современный курс общей химии. М., 2002. Т. 1-2; Киселев Ю. М., Добрынина Н. А. Химия координационных соединений. М., 2007.

Н. А. Добрынина, Н. П. Кузьмина.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «school-mon.ru» — Школьный понедельник - Образовательный портал