Молекулы атр. Пути синтеза атф в организме. Тема: Основы цитологии

Наш организм производит АТФ, чтобы получить энергию для движения, но зачастую этой энергии бывает недостаточно. Стоит ли в этом случае принимать ATФ в форме добавки?

Аденозинтрифосфат, или АТФ, является основным источником энергии, который поддерживает все процессы в организме. На самом деле, если в организме прекращается производство АТФ, это значит, что вы... что ж, вы мертвы.

Долгое время АТФ считался химическим веществом, которое организм способен синтезировать из других питательных веществ, но не может получить из самостоятельной добавки. Тем не менее, прием таблеток или порошков АТФ может принести ощутимую пользу вашим тренировкам.

Что собой представляет АТФ

В каждой молекуле АТФ есть три фосфатные группы (трифосфат). При высвобождении из молекулы фосфатных групп выделяется огромное количество энергии. Организм использует эту энергию для осуществления важнейших процессов жизнедеятельности. К ним относятся транспортировка белков и липидов (жиров) в клетки и из клеток, коммуникации между клетками, синтез ДНК и РНК и, наконец, мышечные сокращения, которые делают возможным движение.

Каким образом АТФ дает энергию

В процессе двигательной активности организм постоянно производит новые молекулы АТФ, чтобы удовлетворять потребность клеток в энергии. Запасов готового АТФ в мышечной ткани хватает лишь на пару секунд. В ходе интенсивной мышечной активности энергия расходуется очень быстро, поэтому организму требуется достаточное количество фосфокреатина, глюкозы и кислорода для пополнения запасов АТФ.

Некоторые люди принимают добавки с , чтобы получить больше энергии для выполнения кратковременных, высокоинтенсивных физических упражнений. Креатин обеспечивает повышение энергии за счет увеличения поступления фосфокреатина, который организм может использовать для дальнейшего формирования большего количества АТФ. Потребление углеводов перед тренировкой работает аналогичным образом. Принимая углеводы, вы повышаете уровень глюкозы в крови. Глюкозу, в свою очередь, также можно использовать для получения АТФ в ходе процесса, называемого гликолизом.

Польза добавок с АТФ

Разве в этом случае нет смысла исключить промежуточное звено и просто принимать добавки с АТФ? И да, и нет. Некоторые исследования указывают на позитивные результаты, но в основном это были результаты опытов, проведенных на лабораторных крысах. Последующие исследования на людях не были столь же многообещающими. Однако это не означает, что добавки с АТФ не обладают полезными свойствами. Пусть они и не позволяют напрямую увеличить запасы АТФ в мышечной ткани, но они содействуют улучшению притока крови к активной ткани, повышению физической работоспособности и ускорению восстановления.

Повышение силовых показателей и выносливости

В ходе исследования 2004 года, опубликованного в Журнале Medicine & Science in Sports & Exercise , было обнаружено, что две недели приема добавок АТФ не повлияли на увеличение запасов АТФ в мышечной ткани. Однако испытуемые, принимающие АТФ, выполнили больше повторов жима лежа при нагрузке 70% одноповторного максимума, чем испытуемые, которые принимали плацебо.

Еще одно исследование, опубликованное в Журнале International Society of Sports Nutrition , продемонстрировало, что прием в течение 15 дней подряд 400 мг АТФ способствовал уменьшению мышечной усталости и помог испытуемым более эффективно использовать энергию в ходе интенсивных упражнений по сравнению с членами контрольной группы.

Исследователи из Университета Тампа установили, что в ходе 12-недельной программы силовых тренировок у испытуемых, ежедневно принимающих 400 мг АТФ, значительно улучшились показатели одноповторного максимума в приседаниях со штангой и становой тяге по сравнению с испытуемыми, принимающими плацебо-вещества. Исследование также показало, что у атлетов, которые принимали добавки, толщина мышц квадрицепса увеличилась вдвое больше, чем у тех, кто принимал плацебо.

Увеличение кровотока

Помимо улучшения мышечной функции, прием добавок АТФ также содействует вазодилатации, или расширению артерий. Более широкие сосуды означают, что больше топлива – в частности, больше кислорода и глюкозы – быстрее поступит в активные мышцы. Вазодилатация также содействует выведению из мышечной ткани метаболических отходов, таких как молочная кислота и мочевина, и обеспечивает поступление большего количества питательных веществ для ускорения восстановления мышц.

Улучшение восстановления

Исследование 2017 года, опубликованное в Журнале Американского колледжа питания , продемонстрировало, что прием добавок с АТФ помогает предотвратить снижение запасов АТФ после интенсивных тренировок. Испытуемые, которые принимали добавки, также показали большую мощность, чем члены группы плацебо, в ходе выполнения повторяющихся анаэробных тестов Вингейта (Wingate).

Есть ли у добавок с АТФ побочные эффекты?

На сегодняшний день нет никаких известных побочных эффектов приема аденозинтрифосфата. Но учтите, что самое длинное исследование АТФ продолжалось всего 12 недель. Эффекты более длительного использования добавок с АТФ не изучены.

Взаимодействует ли АТФ с другими добавками?

АТФ безопасно комбинировать с другими добавками. Более того, порой это дает позитивный синергетический эффект и позволяет усилить полезное действие таких добавок, как и .

В каком количестве и в какой форме лучше принимать добавки с АТФ?

Добавки с АТФ чаще всего продаются в форме таблеток; также ингредиент АТФ можно найти в составе некоторых порошковых добавок. Эксперты в области здравоохранения считают, что если вы хотите увеличить уровень АТФ во время физических упражнений, лучше всего принимать .

Независимо от формы добавки, для максимизации полезных свойств необходимо принимать 400 мг АТФ.

Когда лучше принимать АТФ?

До сегодняшнего дня нет окончательных выводов исследований касательно оптимального времени приема и дозировки добавок с АТФ. Существующие исследования показывают, что лучше всего принимать 400 мг АТФ за 30 минут до начала тренировки . В дни, когда у вас нет тренировок, принимайте АФТ натощак за 30 минут до первого приема пищи.

Основным источником энергии для клетки являются питательные вещества: углеводы, жиры и белки, которые окисляются с помощью кислорода. Практически все углеводы, прежде чем достичь клеток организма, благодаря работе желудочно-кишечного тракта и печени превращаются в глюкозу. Наряду с углеводами расщепляются также белки - до аминокислот и липиды - до жирных кислот. В клетке питательные вещества окисляются под действием кислорода и при участии ферментов, контролирующих реакции высвобождения энергии и ее утилизацию. Почти все окислительные реакции происходят в митохондриях, а высвобождаемая энергия запасается в виде макроэргического соединения - АТФ. В дальнейшем для обеспечения внутриклеточных метаболических процессов энергией используется именно АТФ, а не питательные вещества.

Молекула АТФ содержит: (1) азотистое основание аденин; (2) пентозный углевод рибозу, (3) три остатка фосфорной кислоты. Два последних фосфата соединены друг с другом и с остальной частью молекулы макроэргическими фосфатными связями, обозначенными на формуле АТФ символом ~. При соблюдении характерных для организма физических и химических условий энергия каждой такой связи составляет 12000 калорий на 1 моль АТФ, что во много раз превышает энергию обычной химической связи, поэтому фосфатные связи и называют макроэргическими. Более того, эти связи легко разрушаются, обеспечивая внутриклеточные процессы энергией сразу, как только в этом возникает необходимость.

При высвобождении энергии АТФ отдает фосфатную группу и превращается в аденозиндифосфат. Выделившаяся энергия используется практически для всех клеточных процессов, например в реакциях биосинтеза и при мышечном сокращении.

Восполнение запасов АТФ происходит путем воссоединения АДФ с остатком фосфорной кислоты за счет энергии питательных веществ. Этот процесс повторяется вновь и вновь. АТФ постоянно расходуется и накапливается, поэтому она получила название энергетической валюты клетки. Время оборота АТФ составляет всего несколько минут.

Роль митохондрий в химических реакциях образования АТФ. При попадании внутрь клетки глюкоза под действием ферментов цитоплазмы превращается в пировиноградную кислоту (этот процесс называют гликолизом). Энергия, высвобождаемая в этом процессе, затрачивается на превращение небольшого количества АДФ в АТФ, составляющего менее 5% общих запасов энергии.

Синтез АТФ на 95% осуществляется в митохондриях. Пировиноградная кислота, жирные кислоты и аминокислоты, образующиеся соответственно из углеводов, жиров и белков, в матриксе митохондрий в итоге превращаются в соединение под названием «ацетил-КоА». Это соединение, в свою очередь, вступает в серию ферментативных реакций под общим названием «цикл трикарбоновых кислот» или «цикл Кребса», чтобы отдать свою энергию. В цикле трикарбоновых кислот ацетил-КоА расщепляется до атомов водорода и молекул углекислого газа. Углекислый газ удаляется из митохондрий, затем - из клетки путем диффузии и выводится из организма через легкие.

Атомы водорода химически очень активны и поэтому сразу вступают в реакцию с кислородом, диффундирующим в митохондрии. Большое количество энергии, выделяющейся в этой реакции, используется для превращения множества молекул АДФ в АТФ. Эти реакции достаточно сложны и требуют участия огромного числа ферментов, входящих в состав крист митохондрий. На начальном этапе от атома водорода отщепляется электрон, и атом превращается в ион водорода. Процесс заканчивается присоединением ионов водорода к кислороду. В результате этой реакции образуются вода и большое количество энергии, необходимой для работы АТФ-синтетазы - крупного глобулярного белка, выступающего в виде бугорков на поверхности крист митохондрий. Под действием этого фермента, использующего энергию ионов водорода, АДФ превращается в АТФ. Новые молекулы АТФ направляются из митохондрий ко всем отделам клетки, включая ядро, где энергия этого соединения используется для обеспечения самых разных функций. Данный процесс синтеза АТФ в целом называют хемиосмотическим механизмом образования АТФ.

Важнейшим веществом в клетках живых организмов является аденозинтрифосфорная кислота или аденозинтрифосфат. Если ввести аббревиатуру этого названия, то получим АТФ (англ. ATP). Это вещество относится к группе нуклеозидтрифосфатов и играет ведущую роль в процессах метаболизма в живых клетках, являясь для них незаменимым источником энергии.

Вконтакте

Одноклассники

Первооткрывателями АТФ стали учёные-биохимики гарвардской школы тропической медицины - Йеллапрагада Суббарао, Карл Ломан и Сайрус Фиске. Открытие произошло в 1929 году и стало главной вехой в биологии живых систем. Позднее, в 1941 году, немецким биохимиком Фрицем Липманом было установлено, что АТФ в клетках является основным переносчиком энергии.

Строение АТФ

Эта молекула имеет систематическое наименование, которое записывается так: 9-β-D-рибофуранозиладенин-5′-трифосфат, или 9-β-D-рибофуранозил-6-амино-пурин-5′-трифосфат. Какие соединения входят в состав АТФ? Химически она представляет собой трифосфорный эфир аденозина - производного аденина и рибозы . Это вещество образуется путём соединения аденина, являющегося пуриновым азотистым основанием, с 1′-углеродом рибозы при помощи β-N-гликозидной связи. К 5′-углероду рибозы затем последовательно присоединяются α-, β- и γ-молекулы фосфорной кислоты.

Таким образом, молекула АТФ содержит такие соединения, как аденин, рибозу и три остатка фосфорной кислоты. АТФ - это особое соединение, содержащее связи, при которых высвобождается большое количество энергии. Такие связи и вещества называются макроэргическими. Во время гидролиза этих связей молекулы АТФ происходит выделение количества энергии от 40 до 60 кДж/моль, при этом данный процесс сопровождается отщеплением одного или двух остатков фосфорной кислоты.

Вот как записываются эти химические реакции :

  • 1). АТФ + вода→АДФ + фосфорная кислота + энергия;
  • 2). АДФ + вода→АМФ + фосфорная кислота + энергия.

Энергия, высвобожденная в ходе указанных реакций, используется в дальнейших биохимических процессах, требующих определённых энергозатрат.

Роль АТФ в живом организме. Её функции

Какую функцию выполняет АТФ? Прежде всего, энергетическую. Как уже было выше сказано, основной ролью аденозинтрифосфата является энергообеспечение биохимических процессов в живом организме. Такая роль обусловлена тем, что благодаря наличию двух высокоэнергетических связей, АТФ выступает источником энергии для многих физиологических и биохимических процессов, требующих больших энергозатрат. Такими процессами являются все реакции синтеза сложных веществ в организме. Это, прежде всего, активный перенос молекул через клеточные мембраны, включая участие в создании межмембранного электрического потенциала, и осуществление сокращения мышц.

Кроме указанной, перечислим ещё несколько, не менее важных, функций АТФ , таких, как:

Как образуется АТФ в организме?

Синтез аденозинтрифосфорной кислоты идёт постоянно , т. к. энергия организму для нормальной жизнедеятельности нужна всегда. В каждый конкретный момент содержится совсем немного этого вещества - примерно 250 граммов, которые являются «неприкосновенным запасом» на «чёрный день». Во время болезни идёт интенсивный синтез этой кислоты, потому что требуется много энергии для работы иммунной и выделительной систем, а также системы терморегуляции организма, что необходимо для эффективной борьбы с начавшимся недугом.

В каких клетках АТФ больше всего? Это клетки мышечной и нервной тканей, поскольку в них наиболее интенсивно идут процессы энергообмена. И это очевидно, ведь мышцы участвуют в движении, требующем сокращения мышечных волокон, а нейроны передают электрические импульсы, без которых невозможна работа всех систем организма. Поэтому так важно для клетки поддерживать неизменный и высокий уровень аденозинтрифосфата.

Каким же образом в организме могут образовываться молекулы аденозинтрифосфата? Они образуются путём так называемого фосфорилирования АДФ (аденозиндифосфата) . Эта химическая реакция выглядит следующим образом:

АДФ + фосфорная кислота + энергия→АТФ + вода.

Фосфорилирование же АДФ происходит при участии таких катализаторов, как ферменты и свет, и осуществляется одним из трёх способов:

Как окислительное, так и субстратное фосфорилирование использует энергию веществ, окисляющихся в процессе такого синтеза.

Вывод

Аденозинтрифосфорная кислота - это наиболее часто обновляемое вещество в организме. Сколько в среднем живёт молекула аденозинтрифосфата? В теле человека, например, продолжительность её жизни составляет менее одной минуты, поэтому одна молекула такого вещества рождается и распадается до 3000 раз за сутки. Поразительно, но в течение дня человеческий организм синтезирует около 40 кг этого вещества! Настолько велики потребности в этом «внутреннем энергетике» для нас!

Весь цикл синтеза и дальнейшего использования АТФ в качестве энергетического топлива для процессов обмена веществ в организме живого существа представляет собой саму суть энергетического обмена в этом организме. Таким образом, аденозинтрифосфат является своего рода «батарейкой», обеспечивающей нормальную жизнедеятельность всех клеток живого организма.

Источником энергии для организма человека служат процессы окисления химических органических соединений до менее энергетически ценных конечных продуктов. С помощью ферментных систем происходит извлечение энергии из внешних субстратов (питательный веществ) в реакциях их ступенчатого окисления, приводящего к высвобождению энергии небольшими порциями. Внешние источники энергии должны быть трансформированы в клетке в определенную форму, удобную для обеспечения внутриклеточных энергетических нужд. Такой формой преимущественно является молекула аденозинтрифосфат (АТФ) , представляющая мононуклеотид (рис. 6).

Рис. 6. Структурная формула молекулы аденозинтрифосфорной кислоты (АТФ)

АТФ является макроэргическим соединением , оно содержит две связи богатые энергией (макроэргические связи) : между вторым и третьим остатками фосфорной кислоты. Макроэргические связи – ковалентные связи в химических соединениях клетки, которые гидролизуются с выделением значительного количества энергии – 30 кДж/моль и более. При гидролизе каждой из макроэргических связей в молекуле АТФ выделяется около 32 кДж/моль. Гидролиз АТФ осуществляют специальные ферменты, называемые АТФ-азами:

АТФ ® АДФ + Н3РО4; АДФ ® АМФ + Н3РО4

В клетке существуют и другие макроэргические соединения. Большинство из них, также как и АТФ, содержат высокоэнергетическую фосфатную связь. К этой группе соединений относятся и другие нуклеозидтрифосфаты, ацилфосфаты, фосфоенолпируват, креатинфосфат и другие молекулы. Кроме того, в живых организмах присутствуют молекулы с высокоэнергетической тиоэфирной связью, ацилтиоэфиры (рис. 7).

Однако наибольшую роль в энергетических клеточных процессов играет все же молекула АТФ. Эта молекула обладает рядом свойств, позволяющей ей занимать столь значительное место в клеточном метаболизме. Во-первых, молекула АТФ термодинамически нестабильна, о чем говорит изменение свободной энергии гидролиза АТФ DG0 = –31,8 кДж/моль. Во-вторых, молекула АТФ химически высокостабильна. Скорость неферментативного гидролиза АТФ в нормальных условиях очень мала, что позволяет эффективно сохранять энергию, препятствуя ее бесполезному рассеиванию в тепло. В-третьих, молекула АТФ обладает малыми размерами, что позволяет ей поступать в различные внутриклеточные участки путем диффузии. И, наконец, энергия гидролиза АТФ имеет промежуточное значение по сравнению с другими фосфорилированными клеточными молекулами, что позволяет АТФ переносить энергию от высокоэнергетических соединений к низкоэнергетическим.


Рис. 7. Типы соединений, для которых характерна высокая энергия гидролиза

Существуют два механизма синтеза АТФ в клетке: субстратное фосфорилирование и мембранное фосфорилирование. Субстратное фосфорилирование – ферментативный перенос фосфатной группы на молекулы АДФ с образованием АТФ, происходящий в цитоплазме. При субстратном фосфорилировании в результате определенных окислительно-восстановительных реакций образуются богатые энергией нестабильные молекулы, фосфатная группа которых с помощью соответствующих ферментов переносится на АДФ с образованием АТФ. Реакции субстратного фосфорилирования протекают в цитоплазме и катализируются растворимыми ферментами.

Мембранное фосфорилирование – синтез молекулы АТФ с использованием энергии трансмембранного градиента ионов водорода, происходящий на мембране митохондрий. Мембранное фосфорилирование происходит на мембране митохондрий, в которой локализована определенная цепь молекул-переносчиков водорода и электронов. Атомы водорода и электроны отщепляются от окисляющихся органических молекул и с помощью специальных переносчиков попадают в электронтранспортную цепь (дыхательную цепь), локализованную на внутренней мембране митохондрий. Эта цепь представляет собой комплекс мембранных белков, расположенных строго определенным образом. Эти белки являются ферментами, катализирующими окислительно-восстановительные реакции. Переходя от одного белка-переносчика дыхательной цепи к другому, электрон спускается на все более низкий энергетический уровень. Перенос электронов по электронтранспортной цепи сопряжен с выделением протонов из клетки во внешнюю среду. В результате внешняя часть клеточной мембраны приобретает положительный заряд, а внутренняя – отрицательный, возникает разделение зарядов. Кроме того, на мембране образуется градиент ионов водорода. Таким образом, энергия, высвобождаемая при переносе электронов, первоначально запасается в форме электрохимического трансмембранного градиента ионов водорода ( D mН+) . То есть происходит превращение химической и электромагнитной энергии в электрохимическую, которая может быть в дальнейшем использована клеткой для синтеза АТФ. Реакция синтеза АТФ за счет DmН+ и называется мембранным фосфорилированием; мембраны, на которых она осуществляется – энергопреобразующими или сопрягающими . Превращение энергии, освобождающейся при электронном транспорте, в энергию фосфатной связи АТФ объясняет хемоосмотическая теория энергетического сопряжения (рис. 8), разработанная английским биохимиком П. Митчеллом. Сопрягающую мембрану можно уподобить плотине, которая сдерживает напор воды, также как и мембрана сдерживает градиент ионов водорода. Если плотину открыть, то энергия воды может быть использована для выполнения работы или преобразована в другую форму энергии, например электрическую, как это и происходит в гидроэлектростанциях. Аналогично в клетке имеется механизм, позволяющий преобразовать энергию трансмембранного градиента ионов водорода в энергию химической связи АТФ. Разрядка трансмембранного градиента ионов водорода происходит с участием локализованного в той же мембране протонного АТФ-синтазного комплекса . Энергия протона, поступающего через этот ферментативный комплекс в клетку из внешней среды, используется для синтеза молекулы АТФ из АДФ и остатка фосфорной кислоты. Происходящий процесс может быть выражен уравнением:

АДФ + Фн+ nН+нар à АТФ + Н2О + nН+внутр.

АТФ-синтазный ферментативный комплекс служит механизмом, обеспечивающим взаимопревращение двух форм клеточной энергии: DmН+ « АТФ.

Рис. 8. Схема работы электронтранспортной цепи и АТФ-синтазного комплекса АН 2 и В – донор и акцептор электронов, соответственно; 1 , 2 , 3 – компоненты электронтранспортной цепи

Стартовым переносчиком дыхательной цепи митохондрий является НАД(Ф)Н-дегидрогеназа, имеющая флавиновую природу. Этот фермент акцептирует протоны и электроны от первичной дегидрогеназы, фермента, отнимающего атомы водорода непосредственно с субстрата. С НАД(Ф)Н-дегидрогеназы электроны передаются на переносчик хиноновой природы, убихинон (кофермент Q), а далее на цитохромы (рис. 9). В митохондриях имеется 5 различных цитохромов (b, c, c1, a, a3). Цитохромы представляют собой гемопротеины, их небелковая часть является гемом и содержит катион металла. Цитохромы окрашены в красно-коричневый цвет. Цитохромы классов b и c содержат катион железа, а цитохромы класса a – катион меди.

Рис. 9. Дыхательная электронтранспортная цепь митохондрий

Конечный цитохром (a+a3) переносит электроны на кислород, т.е. является цитохромоксидазой. На кислород переносится 4 электрона и образуется вода. При синтезе молекулы АТФ через АТФ-синтазный комплекс проходит по крайней мере два протона. Количество синтезируемых молекул АТФ зависит от числа участков цепи, в которых протоны выделяются во внешнею среду. В митохондрии есть 3 участка окислительной цепи, где протоны выводятся наружу и генерируется Dmн+: в начале цепи на НАД(Ф)Н-дегидогеназе, на убихиноне и на цитохромоксидазе (рис. 9). В митохондриях при окислении одной молекулы НАД(Ф)Н по цепи переносится два электрона, а во внешнею среду выводится 6Н+ и, соответственно, синтезируется три молекулы АТФ.

Моносахариды (простые сахара) состоят из одной молекулы, содержащей от 3 до 6 атомов углерода. Дисахариды - соединения, образованные из двух моносахаридов. Полисахариды являются высокомолекулярными веществами, состоящими из большого числа (от нескольких десятков до нескольких десятков тысяч) моносахаридов.

Разнообразные углеводы в больших количествах содержатся в организмах. Их основные функции:

  1. Энергетическая: именно углеводы служат основным источником энергии для организма. Среди моносахаридов это фруктоза, широко встречающаяся в растениях (прежде всего в плодах), и особенно глюкоза (при расщеплении одного ее грамма выделяется 17,6 кДж энергии). Глюкоза содержится в плодах и других частях растений, в крови, лимфе, тканях животных. Из дисахаридов необходимо выделить сахарозу (тростниковый или свекловичный сахар), состоящую из глюкозы и фруктозы, и лактозу (молочный сахар), образованную соединением глюкозы и галактозы. Сахароза содержится в растениях (в основном в плодах), а лактоза - в молоке. Они играют важнейшую роль в питании животных и человека. Большое значение в энергетических процессах имеют такие полисахариды, как крахмал и гликоген, мономером которых выступает глюкоза. Они представляют собой резервные вещества растений и животных соответственно. При наличии в организме большого количества глюкозы она используется для синтеза этих веществ, которые накапливаются в клетках тканей и органов. Так, крахмал в больших количествах содержится в плодах, семенах, клубнях картофеля; гликоген - в печени, мышцах. По мере необходимости данные вещества расщепляются, поставляя глюкозу в различные органы и ткани организма.
  2. Структурная: например, такие моносахариды, как дезоксирибоза и рибоза, участвуют в формировании нуклеотидов. Различные углеводы входят в состав клеточных стенок (целлюлоза у растений, хитин у грибов).

Липиды (жиры) - органические вещества, нерастворимые в воде (гидрофобные), но хорошо растворяющиеся в органических растворителях (хлороформе, бензине и др.). Их молекула состоит из глицерина и жирных кислот. Разнообразие последних и обусловливает многообразие липидов. В мембранах клеток широко встречаются фосфолипиды (содержащие, кроме жирных, остаток фосфорной кислоты) и гликолипиды (соединения липидов и сахаридов).

Функции липидов - структурная, энергетическая и защитная.

Структурной основой клеточной мембраны выступает бимолекулярный (образованный из двух слоев молекул) слой липидов, в который встроены молекулы разнообразных белков.

При расщеплении 1 г жиров выделяется 38,9 кДж энергии, что примерно вдвое больше, чем при расщеплении 1 г углеводов или белков. Жиры могут накапливаться в клетках разных тканей и органов (печени, подкожной клетчатке у животных, семенах у растений), в больших количествах образуя значительный запас «топлива» в организме.

Обладая плохой теплопроводностью, жиры играют важную роль в защите от переохлаждения (например, слои подкожного жира у китов и ластоногих).

АТФ (аденозинтрифосфат). Он служит в клетках универсальным энергоносителем. Энергия, выделяющаяся при расщеплении органических веществ (жиры, углеводы, белки и т. д.), не может использоваться непосредственно для выполнения какой-либо работы, а запасается первоначально в форме АТФ.

Аденозинтрифосфат состоит из азотистого основания аденина, рибозы и трех молекул (а точнее, остатков) фосфорной кислоты (рис. 1).

Рис. 1. Состав молекулы АТФ

При отщеплении одного остатка фосфорной кислоты образуется АДФ (аденозиндифосфат) и высвобождается около 30 кДж энергии, которая расходуется на выполнение какой-либо работы в клетке (например, сокращение мышечной клетки, процессы синтеза органических веществ и т. д.):

Так как запас АТФ в клетке ограничен, он постоянно восстанавливается за счет энергии, выделяющейся при расщеплении других органических веществ; восстановление АТФ происходит путем присоединения молекулы фосфорной кислоты к АДФ:

Таким образом, в биологическом преобразовании энергии можно выделить два основных этапа:

1) синтез АТФ - запасание энергии в клетке;

2)высвобождение запасенной энергии (в процессе расщепления АТФ) для совершения работы в клетке.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «school-mon.ru» — Школьный понедельник - Образовательный портал